Loading…
Radiomics based on multiple machine learning methods for diagnosing early bone metastases not visible on CT images
Objectives This study utilizes [ 99m Tc]-methylene diphosphate (MDP) single photon emission computed tomography (SPECT) images as a reference standard to evaluate whether the integration of radiomics features from computed tomography (CT) and machine learning algorithms can identify microscopic earl...
Saved in:
Published in: | Skeletal radiology 2025-02, Vol.54 (2), p.335-343 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objectives
This study utilizes [
99m
Tc]-methylene diphosphate (MDP) single photon emission computed tomography (SPECT) images as a reference standard to evaluate whether the integration of radiomics features from computed tomography (CT) and machine learning algorithms can identify microscopic early bone metastases. Additionally, we also determine the optimal machine learning approach.
Materials and methods
We retrospectively studied 63 patients with early bone metastasis from July 2020 to March 2023. The ITK-SNAP software was used to delineate early bone metastases and normal bone tissue in SPECT images of each patient, which were then registered onto CT images to outline the volume of interest (VOI). The VOI includes 63 early bone metastasis volumes and 63 normal bone tissue volumes. 126 VOIs were randomly distributed in a 7:3 ratio between the training and testing groups, and 944 radiomics features were extracted from every VOI. We established 20 machine learning models using 5 feature selection algorithms and 4 classification methods. Evaluate the performance of the model using the area under the receiver operating characteristic curve (AUC).
Results
Most machine learning models demonstrated outstanding discriminative capacity, with AUCs higher than 0.70. Notably, the K-Nearest Neighbors (KNN) classifier exhibited significant performance improvement compared to the other four classifiers. Specifically, the model constructed utilizing eXtreme Gradient Boosting (XGBoost) feature selection method integrated with KNN classifier achieved the maximum AUC, which is 0.989 in the training set and 0.975 in the testing set.
Conclusions
Radiomics features integrated with machine learning methods can identify early bone metastases that are not visible on CT images. In our analysis, KNN is considered the optimal classification method. |
---|---|
ISSN: | 0364-2348 1432-2161 1432-2161 |
DOI: | 10.1007/s00256-024-04752-x |