Loading…

Modulation of sleep/wake patterns by gephyrin phosphorylation status

Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. How...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2024-10, Vol.60 (7), p.5431-5449
Main Authors: Tsai, Yuan‐Chen, ElGrawani, Waleed, Muheim, Christine, Spinnler, Andrea, Campbell, Benjamin F. N., Lasic, Denis, Hleihil, Mohammad, Brown, Steven A., Tyagarajan, Shiva K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3
container_end_page 5449
container_issue 7
container_start_page 5431
container_title The European journal of neuroscience
container_volume 60
creator Tsai, Yuan‐Chen
ElGrawani, Waleed
Muheim, Christine
Spinnler, Andrea
Campbell, Benjamin F. N.
Lasic, Denis
Hleihil, Mohammad
Brown, Steven A.
Tyagarajan, Shiva K.
description Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho‐proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on‐demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1‐ and α2‐GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1‐GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non‐rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake‐dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV‐eGFP‐gephyrin or its phospho‐null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep. Gabra1 KO shows changes in NREM sleep in the dark phase, whereas the Gabra2 KO shows NREM sleep changes only in the parietal cortex where α2 subunit expression is high. Targeted proteomics analysis using tissue from sleep and sleep‐deprived cortical tissue shows sleep‐specific gephyrin interactome and gephyrin phosphorylation changes. Consistent with our protein data, AAV transgene expression of gephyrin‐S268A/S270A mutant phenocopies NREM sleep changes observed in Gabra1 KO, whereas gephyrin‐S303A/S305A mutant does not impact NREM sleep.
doi_str_mv 10.1111/ejn.16464
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082958696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112341094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUQC0EoqUw8AMoEgsMae34EXtEpbzEYwGJzXKSG5qSJsFOVOXvMaQwIGHpysu5R1cHoWOCp8S_GayqKRFMsB00JkzgUHEhd9EYK05DScTrCB04t8IYS8H4PhpRhWmEcTRGlw911pWmLeoqqPPAlQDNbGPeIWhM24KtXJD0wRs0y94WVdAsa-fH9tsV15q2c4doLzelg6PtP0EvV4vn-U14_3R9O7-4D9Moliw0LM2oEjhhlMs0z5hUCQfOiWE4TjKTGMpNDDKPmZQ8TqNUGcjSJMuoxNIAnaCzwdvY-qMD1-p14VIoS1NB3TlNsYwUl0IJj57-QVd1Zyt_naaERJQRrJinzgcqtbVzFnLd2GJtbK8J1l9ptU-rv9N69mRr7JI1ZL_kT0sPzAZgU5TQ_2_Si7vHQfkJhdGDJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112341094</pqid></control><display><type>article</type><title>Modulation of sleep/wake patterns by gephyrin phosphorylation status</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tsai, Yuan‐Chen ; ElGrawani, Waleed ; Muheim, Christine ; Spinnler, Andrea ; Campbell, Benjamin F. N. ; Lasic, Denis ; Hleihil, Mohammad ; Brown, Steven A. ; Tyagarajan, Shiva K.</creator><creatorcontrib>Tsai, Yuan‐Chen ; ElGrawani, Waleed ; Muheim, Christine ; Spinnler, Andrea ; Campbell, Benjamin F. N. ; Lasic, Denis ; Hleihil, Mohammad ; Brown, Steven A. ; Tyagarajan, Shiva K.</creatorcontrib><description>Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho‐proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on‐demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1‐ and α2‐GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1‐GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non‐rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake‐dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV‐eGFP‐gephyrin or its phospho‐null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep. Gabra1 KO shows changes in NREM sleep in the dark phase, whereas the Gabra2 KO shows NREM sleep changes only in the parietal cortex where α2 subunit expression is high. Targeted proteomics analysis using tissue from sleep and sleep‐deprived cortical tissue shows sleep‐specific gephyrin interactome and gephyrin phosphorylation changes. Consistent with our protein data, AAV transgene expression of gephyrin‐S268A/S270A mutant phenocopies NREM sleep changes observed in Gabra1 KO, whereas gephyrin‐S303A/S305A mutant does not impact NREM sleep.</description><identifier>ISSN: 0953-816X</identifier><identifier>ISSN: 1460-9568</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/ejn.16464</identifier><identifier>PMID: 39032002</identifier><language>eng</language><publisher>France: Wiley Subscription Services, Inc</publisher><subject>Animals ; Benzodiazepines ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; EEG ; Electroencephalography - methods ; ERK1/2 ; Extracellular signal-regulated kinase ; Eye movements ; GABA ; Gephyrin ; GSK3β ; Kinases ; Male ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Molecular modelling ; Neurotransmission ; non‐rapid eye movement ; NREM sleep ; Phosphorylation ; postsynaptic density ; Proteomes ; Proteomics ; Receptors, GABA-A - metabolism ; REM sleep ; Sleep ; Sleep - physiology ; Sleep and wakefulness ; Wakefulness - physiology ; γ-Aminobutyric acid A receptors</subject><ispartof>The European journal of neuroscience, 2024-10, Vol.60 (7), p.5431-5449</ispartof><rights>2024 The Author(s). published by Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3</cites><orcidid>0000-0003-0074-1805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39032002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Yuan‐Chen</creatorcontrib><creatorcontrib>ElGrawani, Waleed</creatorcontrib><creatorcontrib>Muheim, Christine</creatorcontrib><creatorcontrib>Spinnler, Andrea</creatorcontrib><creatorcontrib>Campbell, Benjamin F. N.</creatorcontrib><creatorcontrib>Lasic, Denis</creatorcontrib><creatorcontrib>Hleihil, Mohammad</creatorcontrib><creatorcontrib>Brown, Steven A.</creatorcontrib><creatorcontrib>Tyagarajan, Shiva K.</creatorcontrib><title>Modulation of sleep/wake patterns by gephyrin phosphorylation status</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho‐proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on‐demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1‐ and α2‐GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1‐GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non‐rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake‐dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV‐eGFP‐gephyrin or its phospho‐null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep. Gabra1 KO shows changes in NREM sleep in the dark phase, whereas the Gabra2 KO shows NREM sleep changes only in the parietal cortex where α2 subunit expression is high. Targeted proteomics analysis using tissue from sleep and sleep‐deprived cortical tissue shows sleep‐specific gephyrin interactome and gephyrin phosphorylation changes. Consistent with our protein data, AAV transgene expression of gephyrin‐S268A/S270A mutant phenocopies NREM sleep changes observed in Gabra1 KO, whereas gephyrin‐S303A/S305A mutant does not impact NREM sleep.</description><subject>Animals</subject><subject>Benzodiazepines</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>ERK1/2</subject><subject>Extracellular signal-regulated kinase</subject><subject>Eye movements</subject><subject>GABA</subject><subject>Gephyrin</subject><subject>GSK3β</subject><subject>Kinases</subject><subject>Male</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular modelling</subject><subject>Neurotransmission</subject><subject>non‐rapid eye movement</subject><subject>NREM sleep</subject><subject>Phosphorylation</subject><subject>postsynaptic density</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Receptors, GABA-A - metabolism</subject><subject>REM sleep</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep and wakefulness</subject><subject>Wakefulness - physiology</subject><subject>γ-Aminobutyric acid A receptors</subject><issn>0953-816X</issn><issn>1460-9568</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kLtOwzAUQC0EoqUw8AMoEgsMae34EXtEpbzEYwGJzXKSG5qSJsFOVOXvMaQwIGHpysu5R1cHoWOCp8S_GayqKRFMsB00JkzgUHEhd9EYK05DScTrCB04t8IYS8H4PhpRhWmEcTRGlw911pWmLeoqqPPAlQDNbGPeIWhM24KtXJD0wRs0y94WVdAsa-fH9tsV15q2c4doLzelg6PtP0EvV4vn-U14_3R9O7-4D9Moliw0LM2oEjhhlMs0z5hUCQfOiWE4TjKTGMpNDDKPmZQ8TqNUGcjSJMuoxNIAnaCzwdvY-qMD1-p14VIoS1NB3TlNsYwUl0IJj57-QVd1Zyt_naaERJQRrJinzgcqtbVzFnLd2GJtbK8J1l9ptU-rv9N69mRr7JI1ZL_kT0sPzAZgU5TQ_2_Si7vHQfkJhdGDJw</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Tsai, Yuan‐Chen</creator><creator>ElGrawani, Waleed</creator><creator>Muheim, Christine</creator><creator>Spinnler, Andrea</creator><creator>Campbell, Benjamin F. N.</creator><creator>Lasic, Denis</creator><creator>Hleihil, Mohammad</creator><creator>Brown, Steven A.</creator><creator>Tyagarajan, Shiva K.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0074-1805</orcidid></search><sort><creationdate>202410</creationdate><title>Modulation of sleep/wake patterns by gephyrin phosphorylation status</title><author>Tsai, Yuan‐Chen ; ElGrawani, Waleed ; Muheim, Christine ; Spinnler, Andrea ; Campbell, Benjamin F. N. ; Lasic, Denis ; Hleihil, Mohammad ; Brown, Steven A. ; Tyagarajan, Shiva K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Benzodiazepines</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>ERK1/2</topic><topic>Extracellular signal-regulated kinase</topic><topic>Eye movements</topic><topic>GABA</topic><topic>Gephyrin</topic><topic>GSK3β</topic><topic>Kinases</topic><topic>Male</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular modelling</topic><topic>Neurotransmission</topic><topic>non‐rapid eye movement</topic><topic>NREM sleep</topic><topic>Phosphorylation</topic><topic>postsynaptic density</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Receptors, GABA-A - metabolism</topic><topic>REM sleep</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep and wakefulness</topic><topic>Wakefulness - physiology</topic><topic>γ-Aminobutyric acid A receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Yuan‐Chen</creatorcontrib><creatorcontrib>ElGrawani, Waleed</creatorcontrib><creatorcontrib>Muheim, Christine</creatorcontrib><creatorcontrib>Spinnler, Andrea</creatorcontrib><creatorcontrib>Campbell, Benjamin F. N.</creatorcontrib><creatorcontrib>Lasic, Denis</creatorcontrib><creatorcontrib>Hleihil, Mohammad</creatorcontrib><creatorcontrib>Brown, Steven A.</creatorcontrib><creatorcontrib>Tyagarajan, Shiva K.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Yuan‐Chen</au><au>ElGrawani, Waleed</au><au>Muheim, Christine</au><au>Spinnler, Andrea</au><au>Campbell, Benjamin F. N.</au><au>Lasic, Denis</au><au>Hleihil, Mohammad</au><au>Brown, Steven A.</au><au>Tyagarajan, Shiva K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of sleep/wake patterns by gephyrin phosphorylation status</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2024-10</date><risdate>2024</risdate><volume>60</volume><issue>7</issue><spage>5431</spage><epage>5449</epage><pages>5431-5449</pages><issn>0953-816X</issn><issn>1460-9568</issn><eissn>1460-9568</eissn><abstract>Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho‐proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on‐demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1‐ and α2‐GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1‐GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non‐rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake‐dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV‐eGFP‐gephyrin or its phospho‐null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep. Gabra1 KO shows changes in NREM sleep in the dark phase, whereas the Gabra2 KO shows NREM sleep changes only in the parietal cortex where α2 subunit expression is high. Targeted proteomics analysis using tissue from sleep and sleep‐deprived cortical tissue shows sleep‐specific gephyrin interactome and gephyrin phosphorylation changes. Consistent with our protein data, AAV transgene expression of gephyrin‐S268A/S270A mutant phenocopies NREM sleep changes observed in Gabra1 KO, whereas gephyrin‐S303A/S305A mutant does not impact NREM sleep.</abstract><cop>France</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39032002</pmid><doi>10.1111/ejn.16464</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0074-1805</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2024-10, Vol.60 (7), p.5431-5449
issn 0953-816X
1460-9568
1460-9568
language eng
recordid cdi_proquest_miscellaneous_3082958696
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Benzodiazepines
Carrier Proteins - genetics
Carrier Proteins - metabolism
EEG
Electroencephalography - methods
ERK1/2
Extracellular signal-regulated kinase
Eye movements
GABA
Gephyrin
GSK3β
Kinases
Male
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
Molecular modelling
Neurotransmission
non‐rapid eye movement
NREM sleep
Phosphorylation
postsynaptic density
Proteomes
Proteomics
Receptors, GABA-A - metabolism
REM sleep
Sleep
Sleep - physiology
Sleep and wakefulness
Wakefulness - physiology
γ-Aminobutyric acid A receptors
title Modulation of sleep/wake patterns by gephyrin phosphorylation status
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20sleep/wake%20patterns%20by%20gephyrin%20phosphorylation%20status&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Tsai,%20Yuan%E2%80%90Chen&rft.date=2024-10&rft.volume=60&rft.issue=7&rft.spage=5431&rft.epage=5449&rft.pages=5431-5449&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/ejn.16464&rft_dat=%3Cproquest_cross%3E3112341094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112341094&rft_id=info:pmid/39032002&rfr_iscdi=true