Loading…
Modulation of sleep/wake patterns by gephyrin phosphorylation status
Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. How...
Saved in:
Published in: | The European journal of neuroscience 2024-10, Vol.60 (7), p.5431-5449 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3 |
container_end_page | 5449 |
container_issue | 7 |
container_start_page | 5431 |
container_title | The European journal of neuroscience |
container_volume | 60 |
creator | Tsai, Yuan‐Chen ElGrawani, Waleed Muheim, Christine Spinnler, Andrea Campbell, Benjamin F. N. Lasic, Denis Hleihil, Mohammad Brown, Steven A. Tyagarajan, Shiva K. |
description | Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho‐proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on‐demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1‐ and α2‐GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1‐GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non‐rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake‐dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV‐eGFP‐gephyrin or its phospho‐null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep.
Gabra1 KO shows changes in NREM sleep in the dark phase, whereas the Gabra2 KO shows NREM sleep changes only in the parietal cortex where α2 subunit expression is high. Targeted proteomics analysis using tissue from sleep and sleep‐deprived cortical tissue shows sleep‐specific gephyrin interactome and gephyrin phosphorylation changes. Consistent with our protein data, AAV transgene expression of gephyrin‐S268A/S270A mutant phenocopies NREM sleep changes observed in Gabra1 KO, whereas gephyrin‐S303A/S305A mutant does not impact NREM sleep. |
doi_str_mv | 10.1111/ejn.16464 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3082958696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112341094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUQC0EoqUw8AMoEgsMae34EXtEpbzEYwGJzXKSG5qSJsFOVOXvMaQwIGHpysu5R1cHoWOCp8S_GayqKRFMsB00JkzgUHEhd9EYK05DScTrCB04t8IYS8H4PhpRhWmEcTRGlw911pWmLeoqqPPAlQDNbGPeIWhM24KtXJD0wRs0y94WVdAsa-fH9tsV15q2c4doLzelg6PtP0EvV4vn-U14_3R9O7-4D9Moliw0LM2oEjhhlMs0z5hUCQfOiWE4TjKTGMpNDDKPmZQ8TqNUGcjSJMuoxNIAnaCzwdvY-qMD1-p14VIoS1NB3TlNsYwUl0IJj57-QVd1Zyt_naaERJQRrJinzgcqtbVzFnLd2GJtbK8J1l9ptU-rv9N69mRr7JI1ZL_kT0sPzAZgU5TQ_2_Si7vHQfkJhdGDJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112341094</pqid></control><display><type>article</type><title>Modulation of sleep/wake patterns by gephyrin phosphorylation status</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tsai, Yuan‐Chen ; ElGrawani, Waleed ; Muheim, Christine ; Spinnler, Andrea ; Campbell, Benjamin F. N. ; Lasic, Denis ; Hleihil, Mohammad ; Brown, Steven A. ; Tyagarajan, Shiva K.</creator><creatorcontrib>Tsai, Yuan‐Chen ; ElGrawani, Waleed ; Muheim, Christine ; Spinnler, Andrea ; Campbell, Benjamin F. N. ; Lasic, Denis ; Hleihil, Mohammad ; Brown, Steven A. ; Tyagarajan, Shiva K.</creatorcontrib><description>Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho‐proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on‐demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1‐ and α2‐GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1‐GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non‐rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake‐dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV‐eGFP‐gephyrin or its phospho‐null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep.
Gabra1 KO shows changes in NREM sleep in the dark phase, whereas the Gabra2 KO shows NREM sleep changes only in the parietal cortex where α2 subunit expression is high. Targeted proteomics analysis using tissue from sleep and sleep‐deprived cortical tissue shows sleep‐specific gephyrin interactome and gephyrin phosphorylation changes. Consistent with our protein data, AAV transgene expression of gephyrin‐S268A/S270A mutant phenocopies NREM sleep changes observed in Gabra1 KO, whereas gephyrin‐S303A/S305A mutant does not impact NREM sleep.</description><identifier>ISSN: 0953-816X</identifier><identifier>ISSN: 1460-9568</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/ejn.16464</identifier><identifier>PMID: 39032002</identifier><language>eng</language><publisher>France: Wiley Subscription Services, Inc</publisher><subject>Animals ; Benzodiazepines ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; EEG ; Electroencephalography - methods ; ERK1/2 ; Extracellular signal-regulated kinase ; Eye movements ; GABA ; Gephyrin ; GSK3β ; Kinases ; Male ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Inbred C57BL ; Molecular modelling ; Neurotransmission ; non‐rapid eye movement ; NREM sleep ; Phosphorylation ; postsynaptic density ; Proteomes ; Proteomics ; Receptors, GABA-A - metabolism ; REM sleep ; Sleep ; Sleep - physiology ; Sleep and wakefulness ; Wakefulness - physiology ; γ-Aminobutyric acid A receptors</subject><ispartof>The European journal of neuroscience, 2024-10, Vol.60 (7), p.5431-5449</ispartof><rights>2024 The Author(s). published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3</cites><orcidid>0000-0003-0074-1805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39032002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Yuan‐Chen</creatorcontrib><creatorcontrib>ElGrawani, Waleed</creatorcontrib><creatorcontrib>Muheim, Christine</creatorcontrib><creatorcontrib>Spinnler, Andrea</creatorcontrib><creatorcontrib>Campbell, Benjamin F. N.</creatorcontrib><creatorcontrib>Lasic, Denis</creatorcontrib><creatorcontrib>Hleihil, Mohammad</creatorcontrib><creatorcontrib>Brown, Steven A.</creatorcontrib><creatorcontrib>Tyagarajan, Shiva K.</creatorcontrib><title>Modulation of sleep/wake patterns by gephyrin phosphorylation status</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho‐proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on‐demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1‐ and α2‐GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1‐GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non‐rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake‐dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV‐eGFP‐gephyrin or its phospho‐null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep.
Gabra1 KO shows changes in NREM sleep in the dark phase, whereas the Gabra2 KO shows NREM sleep changes only in the parietal cortex where α2 subunit expression is high. Targeted proteomics analysis using tissue from sleep and sleep‐deprived cortical tissue shows sleep‐specific gephyrin interactome and gephyrin phosphorylation changes. Consistent with our protein data, AAV transgene expression of gephyrin‐S268A/S270A mutant phenocopies NREM sleep changes observed in Gabra1 KO, whereas gephyrin‐S303A/S305A mutant does not impact NREM sleep.</description><subject>Animals</subject><subject>Benzodiazepines</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>ERK1/2</subject><subject>Extracellular signal-regulated kinase</subject><subject>Eye movements</subject><subject>GABA</subject><subject>Gephyrin</subject><subject>GSK3β</subject><subject>Kinases</subject><subject>Male</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular modelling</subject><subject>Neurotransmission</subject><subject>non‐rapid eye movement</subject><subject>NREM sleep</subject><subject>Phosphorylation</subject><subject>postsynaptic density</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Receptors, GABA-A - metabolism</subject><subject>REM sleep</subject><subject>Sleep</subject><subject>Sleep - physiology</subject><subject>Sleep and wakefulness</subject><subject>Wakefulness - physiology</subject><subject>γ-Aminobutyric acid A receptors</subject><issn>0953-816X</issn><issn>1460-9568</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kLtOwzAUQC0EoqUw8AMoEgsMae34EXtEpbzEYwGJzXKSG5qSJsFOVOXvMaQwIGHpysu5R1cHoWOCp8S_GayqKRFMsB00JkzgUHEhd9EYK05DScTrCB04t8IYS8H4PhpRhWmEcTRGlw911pWmLeoqqPPAlQDNbGPeIWhM24KtXJD0wRs0y94WVdAsa-fH9tsV15q2c4doLzelg6PtP0EvV4vn-U14_3R9O7-4D9Moliw0LM2oEjhhlMs0z5hUCQfOiWE4TjKTGMpNDDKPmZQ8TqNUGcjSJMuoxNIAnaCzwdvY-qMD1-p14VIoS1NB3TlNsYwUl0IJj57-QVd1Zyt_naaERJQRrJinzgcqtbVzFnLd2GJtbK8J1l9ptU-rv9N69mRr7JI1ZL_kT0sPzAZgU5TQ_2_Si7vHQfkJhdGDJw</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Tsai, Yuan‐Chen</creator><creator>ElGrawani, Waleed</creator><creator>Muheim, Christine</creator><creator>Spinnler, Andrea</creator><creator>Campbell, Benjamin F. N.</creator><creator>Lasic, Denis</creator><creator>Hleihil, Mohammad</creator><creator>Brown, Steven A.</creator><creator>Tyagarajan, Shiva K.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0074-1805</orcidid></search><sort><creationdate>202410</creationdate><title>Modulation of sleep/wake patterns by gephyrin phosphorylation status</title><author>Tsai, Yuan‐Chen ; ElGrawani, Waleed ; Muheim, Christine ; Spinnler, Andrea ; Campbell, Benjamin F. N. ; Lasic, Denis ; Hleihil, Mohammad ; Brown, Steven A. ; Tyagarajan, Shiva K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Benzodiazepines</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>ERK1/2</topic><topic>Extracellular signal-regulated kinase</topic><topic>Eye movements</topic><topic>GABA</topic><topic>Gephyrin</topic><topic>GSK3β</topic><topic>Kinases</topic><topic>Male</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular modelling</topic><topic>Neurotransmission</topic><topic>non‐rapid eye movement</topic><topic>NREM sleep</topic><topic>Phosphorylation</topic><topic>postsynaptic density</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Receptors, GABA-A - metabolism</topic><topic>REM sleep</topic><topic>Sleep</topic><topic>Sleep - physiology</topic><topic>Sleep and wakefulness</topic><topic>Wakefulness - physiology</topic><topic>γ-Aminobutyric acid A receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Yuan‐Chen</creatorcontrib><creatorcontrib>ElGrawani, Waleed</creatorcontrib><creatorcontrib>Muheim, Christine</creatorcontrib><creatorcontrib>Spinnler, Andrea</creatorcontrib><creatorcontrib>Campbell, Benjamin F. N.</creatorcontrib><creatorcontrib>Lasic, Denis</creatorcontrib><creatorcontrib>Hleihil, Mohammad</creatorcontrib><creatorcontrib>Brown, Steven A.</creatorcontrib><creatorcontrib>Tyagarajan, Shiva K.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Yuan‐Chen</au><au>ElGrawani, Waleed</au><au>Muheim, Christine</au><au>Spinnler, Andrea</au><au>Campbell, Benjamin F. N.</au><au>Lasic, Denis</au><au>Hleihil, Mohammad</au><au>Brown, Steven A.</au><au>Tyagarajan, Shiva K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of sleep/wake patterns by gephyrin phosphorylation status</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2024-10</date><risdate>2024</risdate><volume>60</volume><issue>7</issue><spage>5431</spage><epage>5449</epage><pages>5431-5449</pages><issn>0953-816X</issn><issn>1460-9568</issn><eissn>1460-9568</eissn><abstract>Sleep/wake cycles intricately shape physiological activities including cognitive brain functions, yet the precise molecular orchestrators of sleep remain elusive. Notably, the clinical impact of benzodiazepine drugs underscores the pivotal role of GABAergic neurotransmission in sleep regulation. However, the specific contributions of distinct GABAA receptor subtypes and their principal scaffolding protein, gephyrin, in sleep dynamics remain unclear. The evolving role of synaptic phospho‐proteome alterations at excitatory and inhibitory synapses suggests a potential avenue for modulating gephyrin and, consequently, GABAARs for sleep through on‐demand kinase recruitment. Our study unveils the distinctive roles of two prevalent GABAA receptor subtypes, α1‐ and α2‐GABAARs, in influencing sleep duration and electrical sleep activity. Notably, the absence of α1‐GABAARs emerges as central in sleep regulation, manifesting significant alterations in both non‐rapid eye movement (NREM) and rapid eye movement (REM) sleep during dark or active phases, accompanied by altered electroencephalogram (EEG) patterns across various frequencies. Gephyrin proteomics analysis reveals sleep/wake‐dependent interactions with a repertoire of known and novel kinases. Crucially, we identify the regulation of gephyrin interaction with ERK1/2, and phosphorylations at serines 268 and 270 are dictated by sleep/wake cycles. Employing AAV‐eGFP‐gephyrin or its phospho‐null variant (S268A/S270A), we disrupt sleep either globally or locally to demonstrate gephyrin phosphorylation as a sleep regulator. In summary, our findings support the local cortical sleep hypothesis and we unveil a molecular mechanism operating at GABAergic synapses, providing critical insights into the intricate regulation of sleep.
Gabra1 KO shows changes in NREM sleep in the dark phase, whereas the Gabra2 KO shows NREM sleep changes only in the parietal cortex where α2 subunit expression is high. Targeted proteomics analysis using tissue from sleep and sleep‐deprived cortical tissue shows sleep‐specific gephyrin interactome and gephyrin phosphorylation changes. Consistent with our protein data, AAV transgene expression of gephyrin‐S268A/S270A mutant phenocopies NREM sleep changes observed in Gabra1 KO, whereas gephyrin‐S303A/S305A mutant does not impact NREM sleep.</abstract><cop>France</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39032002</pmid><doi>10.1111/ejn.16464</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0074-1805</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-816X |
ispartof | The European journal of neuroscience, 2024-10, Vol.60 (7), p.5431-5449 |
issn | 0953-816X 1460-9568 1460-9568 |
language | eng |
recordid | cdi_proquest_miscellaneous_3082958696 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Benzodiazepines Carrier Proteins - genetics Carrier Proteins - metabolism EEG Electroencephalography - methods ERK1/2 Extracellular signal-regulated kinase Eye movements GABA Gephyrin GSK3β Kinases Male Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Inbred C57BL Molecular modelling Neurotransmission non‐rapid eye movement NREM sleep Phosphorylation postsynaptic density Proteomes Proteomics Receptors, GABA-A - metabolism REM sleep Sleep Sleep - physiology Sleep and wakefulness Wakefulness - physiology γ-Aminobutyric acid A receptors |
title | Modulation of sleep/wake patterns by gephyrin phosphorylation status |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20sleep/wake%20patterns%20by%20gephyrin%20phosphorylation%20status&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Tsai,%20Yuan%E2%80%90Chen&rft.date=2024-10&rft.volume=60&rft.issue=7&rft.spage=5431&rft.epage=5449&rft.pages=5431-5449&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/ejn.16464&rft_dat=%3Cproquest_cross%3E3112341094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2784-a4cd3960b4358cfd489b5e551a407bdaba35a7e8f748857c2c9aedcbdd3808ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112341094&rft_id=info:pmid/39032002&rfr_iscdi=true |