Loading…

Evaluation of combination vaccines targeting transmission of Plasmodium falciparum and P. vivax

•Combination of TBV antigens encoded by DNA vaccines elicit Plasmodium species-specific transmission-blocking antibodies.•Immunogenicity of individual antigen was not compromised when tested in a combination.•Pvs48/45 elicits both blocking and enhancing antibodies. Transmission-blocking vaccines int...

Full description

Saved in:
Bibliographic Details
Published in:Vaccine 2024-08, Vol.42 (21), p.126140, Article 126140
Main Authors: Cao, Yi, Hayashi, Clifford T.H., Araujo, Maisa da Silva, Tripathi, Abhai K., Andrade, Alice Oliveira, Medeiros, Jansen Fernandes, Vinetz, Joseph, Kumar, Nirbhay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Combination of TBV antigens encoded by DNA vaccines elicit Plasmodium species-specific transmission-blocking antibodies.•Immunogenicity of individual antigen was not compromised when tested in a combination.•Pvs48/45 elicits both blocking and enhancing antibodies. Transmission-blocking vaccines interrupting malaria transmission within mosquitoes represent an ideal public health tool to eliminate malaria at the population level. Plasmodium falciparum and P. vivax account for more than 90% of the global malaria burden, co-endemic in many regions of the world. P25 and P48/45 are two leading candidates for both species and have shown promising transmission-blocking activity in preclinical and clinical studies. However, neither of these target antigens as individual vaccines has induced complete transmission inhibition in mosquitoes. In this study, we assessed immunogenicity of combination vaccines based on P25 and P48/45 using a DNA vaccine platform to broaden vaccine specificity against P. falciparum and P. vivax. Individual DNA vaccines encoding Pvs25, Pfs25, Pvs48/45 and Pfs48/45, as well as various combinations including (Pvs25 + Pvs48/45), (Pfs25 + Pfs48/45), (Pvs25 + Pfs25), and (Pvs48/45 + Pfs48/45), were evaluated in mice using in vivo electroporation. Potent antibody responses were induced in mice immunized with individual and combination DNA vaccines, and specific antibody responses were not compromised when combinations of DNA vaccines were evaluated against individual DNA vaccines. The anti-Pvs25 IgG from individual and combination groups revealed concentration-dependent transmission-reducing activity (TRA) in direct membrane feeding assays (DMFA) using blood from P. vivax-infected donors in Brazil and independently in ex vivo MFA using Pvs25-transgenic P. berghei. Similarly, anti-Pfs25 and anti-Pfs48/45 IgGs from mice immunized with Pfs25 and Pfs48/45 DNA vaccines individually and in various combinations revealed antibody dose-dependent TRA in standard membrane feeding assays (SMFA) using culture-derived P. falciparum gametocytes. However, antibodies induced by immunization with Pvs48/45 DNA vaccines were ineffective in DMFA and require further vaccine construct optimization, considering the possibility of induction of both transmission-blocking and transmission-enhancing antibodies revealed by competition ELISA. These studies provide a rationale for combining multiple antigens to simultaneously target transmission of malaria caused by P. falcipa
ISSN:0264-410X
1873-2518
1873-2518
DOI:10.1016/j.vaccine.2024.07.041