Loading…

Tri‐Step Water‐Assisted Strategy for Suppressing Cs4PbBr6 Phase in Printable Carbon‐Based CsPbBr3 Solar Cells to Achieve High Stability

Often deemed the “natural nemesis” of perovskites, water molecules have been largely circumvented by the majority of researchers in the field of perovskite solar cells. This has resulted in significant hurdles in investigating the beneficial impacts of water molecules on perovskite crystallization....

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (45), p.e2404044-n/a
Main Authors: Cen, Ronghao, Shao, Wu, Wu, Wenjun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 45
container_start_page e2404044
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Cen, Ronghao
Shao, Wu
Wu, Wenjun
description Often deemed the “natural nemesis” of perovskites, water molecules have been largely circumvented by the majority of researchers in the field of perovskite solar cells. This has resulted in significant hurdles in investigating the beneficial impacts of water molecules on perovskite crystallization. Herein, it is found that by utilizing ethanol with minimal water content and subjecting all‐inorganic perovskite to three distinct annealing temperatures within the same solvent, the residual CsBr can be effectively removed, and the formation of the Cs4PbBr6 phase can be curtailed. By selecting an optimal water content, substantial improvements are observed in the crystalline quality of CsPbBr3, the perovskite/carbon interface, and the mesoporous filling effect. The Urbach energy (Eu) is reduced from 38.96 to 35.59 meV, and the defect density decreased from 4.16 × 1014 to 3.39 × 1014 cm−3. As a result, the power conversion efficiency (PCE) improved from 7.55% in the control group to 9.37%. Under severe environmental conditions with a temperature (T) of 85 °C and a relative humidity (RH) of 40%, tracking tests over 1200 h retained 89.3% of the initial PCE. This research signifies a breakthrough in the fabrication of highly stable and efficient all‐inorganic printable mesoscopic perovskite solar cells. The study innovatively integrates water into perovskite solar cell fabrication. Using ethanol with trace water and a tri‐phasic annealing technique, CsBr, suppressed Cs4PbBr6 phase formation, and enhanced CsPbBr3 crystallinity is eradicated. This led to a power conversion efficiency increase from 7.55% to 9.37%, with cells maintaining 89.3% efficiency after 1200 h under challenging conditions. This marks a significant advancement in printable mesoscopic perovskite solar cells.
doi_str_mv 10.1002/smll.202404044
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3083220079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083220079</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1964-adab750f754b758db0f647010c89a130dc8a2b1cdcff243cda89b0c937a25a2f3</originalsourceid><addsrcrecordid>eNpdkUtLw0AQx4MoWKtXzwtevLTOPvI61qBWiFhIxeOySTbtlm0SdxMlN7-A4Gf0k7il0oPMYV4_Zob5e94lhikGIDd2q_WUAGHgjB15IxxgOgkiEh8fYgyn3pm1GwCKCQtH3tfSqJ_P76yTLXoVnTQumVmrbCdLlHXGlVYDqhqDsr5tjXSteoUSyxb5rQnQYi2sRKpGC6PqTuRaokSYvKndmFvXKh26IynKGi0MSqTWFnUNmhVrJd8lmqvV2u0RudKqG869k0poKy_-_Nh7ub9bJvNJ-vzwmMzSSYvjgE1EKfLQhyr0mfNRmUMVsBAwFFEsMIWyiATJcVEWVUUYLUoRxTkUMQ0F8QWp6Ni73s9tTfPWS9vxrbKFu03UsuktpxBRQgDC2KFX_9BN05vaXcfdC30KBChzVLynPpSWA2-N2gozcAx8Jw3fScMP0vDsKU0PGf0FygKILA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125302034</pqid></control><display><type>article</type><title>Tri‐Step Water‐Assisted Strategy for Suppressing Cs4PbBr6 Phase in Printable Carbon‐Based CsPbBr3 Solar Cells to Achieve High Stability</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cen, Ronghao ; Shao, Wu ; Wu, Wenjun</creator><creatorcontrib>Cen, Ronghao ; Shao, Wu ; Wu, Wenjun</creatorcontrib><description>Often deemed the “natural nemesis” of perovskites, water molecules have been largely circumvented by the majority of researchers in the field of perovskite solar cells. This has resulted in significant hurdles in investigating the beneficial impacts of water molecules on perovskite crystallization. Herein, it is found that by utilizing ethanol with minimal water content and subjecting all‐inorganic perovskite to three distinct annealing temperatures within the same solvent, the residual CsBr can be effectively removed, and the formation of the Cs4PbBr6 phase can be curtailed. By selecting an optimal water content, substantial improvements are observed in the crystalline quality of CsPbBr3, the perovskite/carbon interface, and the mesoporous filling effect. The Urbach energy (Eu) is reduced from 38.96 to 35.59 meV, and the defect density decreased from 4.16 × 1014 to 3.39 × 1014 cm−3. As a result, the power conversion efficiency (PCE) improved from 7.55% in the control group to 9.37%. Under severe environmental conditions with a temperature (T) of 85 °C and a relative humidity (RH) of 40%, tracking tests over 1200 h retained 89.3% of the initial PCE. This research signifies a breakthrough in the fabrication of highly stable and efficient all‐inorganic printable mesoscopic perovskite solar cells. The study innovatively integrates water into perovskite solar cell fabrication. Using ethanol with trace water and a tri‐phasic annealing technique, CsBr, suppressed Cs4PbBr6 phase formation, and enhanced CsPbBr3 crystallinity is eradicated. This led to a power conversion efficiency increase from 7.55% to 9.37%, with cells maintaining 89.3% efficiency after 1200 h under challenging conditions. This marks a significant advancement in printable mesoscopic perovskite solar cells.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202404044</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>all‐inorganic ; Carbon ; Cesium bromides ; Crystal defects ; Crystallization ; Cs4PbBr6 Phase ; Energy conversion efficiency ; Ethanol ; Moisture content ; Perovskites ; Photovoltaic cells ; photovoltaic performance ; printable mesoscopic perovskite solar cells ; Relative humidity ; Solar cells ; water ; Water chemistry</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (45), p.e2404044-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0044-1917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cen, Ronghao</creatorcontrib><creatorcontrib>Shao, Wu</creatorcontrib><creatorcontrib>Wu, Wenjun</creatorcontrib><title>Tri‐Step Water‐Assisted Strategy for Suppressing Cs4PbBr6 Phase in Printable Carbon‐Based CsPbBr3 Solar Cells to Achieve High Stability</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Often deemed the “natural nemesis” of perovskites, water molecules have been largely circumvented by the majority of researchers in the field of perovskite solar cells. This has resulted in significant hurdles in investigating the beneficial impacts of water molecules on perovskite crystallization. Herein, it is found that by utilizing ethanol with minimal water content and subjecting all‐inorganic perovskite to three distinct annealing temperatures within the same solvent, the residual CsBr can be effectively removed, and the formation of the Cs4PbBr6 phase can be curtailed. By selecting an optimal water content, substantial improvements are observed in the crystalline quality of CsPbBr3, the perovskite/carbon interface, and the mesoporous filling effect. The Urbach energy (Eu) is reduced from 38.96 to 35.59 meV, and the defect density decreased from 4.16 × 1014 to 3.39 × 1014 cm−3. As a result, the power conversion efficiency (PCE) improved from 7.55% in the control group to 9.37%. Under severe environmental conditions with a temperature (T) of 85 °C and a relative humidity (RH) of 40%, tracking tests over 1200 h retained 89.3% of the initial PCE. This research signifies a breakthrough in the fabrication of highly stable and efficient all‐inorganic printable mesoscopic perovskite solar cells. The study innovatively integrates water into perovskite solar cell fabrication. Using ethanol with trace water and a tri‐phasic annealing technique, CsBr, suppressed Cs4PbBr6 phase formation, and enhanced CsPbBr3 crystallinity is eradicated. This led to a power conversion efficiency increase from 7.55% to 9.37%, with cells maintaining 89.3% efficiency after 1200 h under challenging conditions. This marks a significant advancement in printable mesoscopic perovskite solar cells.</description><subject>all‐inorganic</subject><subject>Carbon</subject><subject>Cesium bromides</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Cs4PbBr6 Phase</subject><subject>Energy conversion efficiency</subject><subject>Ethanol</subject><subject>Moisture content</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>photovoltaic performance</subject><subject>printable mesoscopic perovskite solar cells</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>water</subject><subject>Water chemistry</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLw0AQx4MoWKtXzwtevLTOPvI61qBWiFhIxeOySTbtlm0SdxMlN7-A4Gf0k7il0oPMYV4_Zob5e94lhikGIDd2q_WUAGHgjB15IxxgOgkiEh8fYgyn3pm1GwCKCQtH3tfSqJ_P76yTLXoVnTQumVmrbCdLlHXGlVYDqhqDsr5tjXSteoUSyxb5rQnQYi2sRKpGC6PqTuRaokSYvKndmFvXKh26IynKGi0MSqTWFnUNmhVrJd8lmqvV2u0RudKqG869k0poKy_-_Nh7ub9bJvNJ-vzwmMzSSYvjgE1EKfLQhyr0mfNRmUMVsBAwFFEsMIWyiATJcVEWVUUYLUoRxTkUMQ0F8QWp6Ni73s9tTfPWS9vxrbKFu03UsuktpxBRQgDC2KFX_9BN05vaXcfdC30KBChzVLynPpSWA2-N2gozcAx8Jw3fScMP0vDsKU0PGf0FygKILA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Cen, Ronghao</creator><creator>Shao, Wu</creator><creator>Wu, Wenjun</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0044-1917</orcidid></search><sort><creationdate>20241101</creationdate><title>Tri‐Step Water‐Assisted Strategy for Suppressing Cs4PbBr6 Phase in Printable Carbon‐Based CsPbBr3 Solar Cells to Achieve High Stability</title><author>Cen, Ronghao ; Shao, Wu ; Wu, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1964-adab750f754b758db0f647010c89a130dc8a2b1cdcff243cda89b0c937a25a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>all‐inorganic</topic><topic>Carbon</topic><topic>Cesium bromides</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Cs4PbBr6 Phase</topic><topic>Energy conversion efficiency</topic><topic>Ethanol</topic><topic>Moisture content</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>photovoltaic performance</topic><topic>printable mesoscopic perovskite solar cells</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>water</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cen, Ronghao</creatorcontrib><creatorcontrib>Shao, Wu</creatorcontrib><creatorcontrib>Wu, Wenjun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cen, Ronghao</au><au>Shao, Wu</au><au>Wu, Wenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tri‐Step Water‐Assisted Strategy for Suppressing Cs4PbBr6 Phase in Printable Carbon‐Based CsPbBr3 Solar Cells to Achieve High Stability</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>20</volume><issue>45</issue><spage>e2404044</spage><epage>n/a</epage><pages>e2404044-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Often deemed the “natural nemesis” of perovskites, water molecules have been largely circumvented by the majority of researchers in the field of perovskite solar cells. This has resulted in significant hurdles in investigating the beneficial impacts of water molecules on perovskite crystallization. Herein, it is found that by utilizing ethanol with minimal water content and subjecting all‐inorganic perovskite to three distinct annealing temperatures within the same solvent, the residual CsBr can be effectively removed, and the formation of the Cs4PbBr6 phase can be curtailed. By selecting an optimal water content, substantial improvements are observed in the crystalline quality of CsPbBr3, the perovskite/carbon interface, and the mesoporous filling effect. The Urbach energy (Eu) is reduced from 38.96 to 35.59 meV, and the defect density decreased from 4.16 × 1014 to 3.39 × 1014 cm−3. As a result, the power conversion efficiency (PCE) improved from 7.55% in the control group to 9.37%. Under severe environmental conditions with a temperature (T) of 85 °C and a relative humidity (RH) of 40%, tracking tests over 1200 h retained 89.3% of the initial PCE. This research signifies a breakthrough in the fabrication of highly stable and efficient all‐inorganic printable mesoscopic perovskite solar cells. The study innovatively integrates water into perovskite solar cell fabrication. Using ethanol with trace water and a tri‐phasic annealing technique, CsBr, suppressed Cs4PbBr6 phase formation, and enhanced CsPbBr3 crystallinity is eradicated. This led to a power conversion efficiency increase from 7.55% to 9.37%, with cells maintaining 89.3% efficiency after 1200 h under challenging conditions. This marks a significant advancement in printable mesoscopic perovskite solar cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202404044</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0044-1917</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (45), p.e2404044-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3083220079
source Wiley-Blackwell Read & Publish Collection
subjects all‐inorganic
Carbon
Cesium bromides
Crystal defects
Crystallization
Cs4PbBr6 Phase
Energy conversion efficiency
Ethanol
Moisture content
Perovskites
Photovoltaic cells
photovoltaic performance
printable mesoscopic perovskite solar cells
Relative humidity
Solar cells
water
Water chemistry
title Tri‐Step Water‐Assisted Strategy for Suppressing Cs4PbBr6 Phase in Printable Carbon‐Based CsPbBr3 Solar Cells to Achieve High Stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tri%E2%80%90Step%20Water%E2%80%90Assisted%20Strategy%20for%20Suppressing%20Cs4PbBr6%20Phase%20in%20Printable%20Carbon%E2%80%90Based%20CsPbBr3%20Solar%20Cells%20to%20Achieve%20High%20Stability&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cen,%20Ronghao&rft.date=2024-11-01&rft.volume=20&rft.issue=45&rft.spage=e2404044&rft.epage=n/a&rft.pages=e2404044-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202404044&rft_dat=%3Cproquest_wiley%3E3083220079%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1964-adab750f754b758db0f647010c89a130dc8a2b1cdcff243cda89b0c937a25a2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125302034&rft_id=info:pmid/&rfr_iscdi=true