Loading…

Characterising the allergic fungal rhinosinusitis microenvironment using full‐length 16S rRNA gene amplicon sequencing and fungal ITS sequencing

Introduction Allergic fungal rhinosinusitis (AFRS) is a severe phenotype of chronic rhinosinusitis with nasal polyposis (CRSwNP), characterised by localised and exaggerated type 2 inflammation. While fungal antigenic stimulation of unregulated Th2‐mediated inflammation is the core pathophysiological...

Full description

Saved in:
Bibliographic Details
Published in:Allergy (Copenhagen) 2024-11, Vol.79 (11), p.3082-3094
Main Authors: Connell, J. T., Bouras, G., Yeo, K., Fenix, K., Cooksley, C., Bassiouni, A., Vreugde, S., Wormald, P. J., Psaltis, A. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2780-f19e78e9e2a8f8b990e2e5a56392485b821c4e5c26f140625aba81122b15057e3
container_end_page 3094
container_issue 11
container_start_page 3082
container_title Allergy (Copenhagen)
container_volume 79
creator Connell, J. T.
Bouras, G.
Yeo, K.
Fenix, K.
Cooksley, C.
Bassiouni, A.
Vreugde, S.
Wormald, P. J.
Psaltis, A. J.
description Introduction Allergic fungal rhinosinusitis (AFRS) is a severe phenotype of chronic rhinosinusitis with nasal polyposis (CRSwNP), characterised by localised and exaggerated type 2 inflammation. While fungal antigenic stimulation of unregulated Th2‐mediated inflammation is the core pathophysiological mechanism, the direct and synergistic role of bacteria in disease modification is a pervasive hypothesis. We set out to define the microenvironment of AFRS to elucidate virulent organisms that may be implicated in the pathophysiology of AFRS. Methodology We undertook a cross‐sectional study of AFRS patients and non‐fungal CRSwNP patients. Demographics, disease severity, culture and microbiome sequences were analysed. Multimodality microbiome sequencing included short‐read next‐generation sequencing (NGS) on the Illumina Miseq (16S rRNA and ITS) and full‐length 16S rRNA sequencing on the Oxford Nanopore Technologies GridION (ONT). Results Thirty‐two AFRS and 29 non‐fungal CRSwNP patients (NF) were included in this study. Staphylococcus aureus was the dominant organism cultured and sequenced in both AFRS and NF groups (AFRS 27.54%; NF 18.04%; p = .07). Streptococcus pneumoniae (AFRS 12.31%; NF 0.98%; p = .03) and Haemophilus influenzae (AFRS 15.03%; NF 0.24%; p = .005) were significantly more abundant in AFRS. Bacterial diversity (Shannon's index) was considerably lower in AFRS relative to NF (AFRS 0.6; NF 1.0, p = .008). Aspergillus was the most cultured fungus in AFRS (10/32, 31.3%). The AFRS sequenced mycobiome was predominantly represented by Malassezia (43.6%), Curvularia (18.5%) and Aspergillus (16.8%), while the NF mycobiome was nearly exclusively Malassezia (84.2%) with an absence of Aspergillus or dematiaceous fungi. Conclusion A low diversity, dysbiotic microenvironment dominated by Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae characterised the bacterial microbiome of AFRS, with a mycobiome abundant in Malassezia, Aspergillus and Curvularia. While Staphylococcus aureus has been previously implicated in AFRS through enterotoxin superantigen potential, Streptococcus pneumoniae and Haemophilus influenzae are novel findings that may represent alternate cross‐kingdom pathophysiological mechanisms. Sinonasal swabs from 61 patients underwent DNA extraction and multimodal gene amplicon sequencing to define the microbiome and mycobiome of AFRS. The AFRS microbiome exhibited low bacterial diversity and was dominated by Staphylococcus
doi_str_mv 10.1111/all.16240
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3084029307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3125816417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2780-f19e78e9e2a8f8b990e2e5a56392485b821c4e5c26f140625aba81122b15057e3</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhq2Kqmyhh74AssSFHgK2Yyf2cbWiLdKqSEDPlmMmWSPH2dpJq731ERCP2Cepl4UKVWIuc5jP31jzI_SRklOa68x4f0orxskbNKOlkoVSSuyhGaFEFFyUch-9T-mOEFIzRd6h_VIRzmtGZ-hhsTLR2BGiSy50eFwBzjqInbO4nUJnPI4rF4Y8nZIbXcK9s3GA8NPFIfQQRjw9vmwn7__8vvcQunGFaXWN49W3Oe4gZGO_9s4OASf4MUGwW96E2-cFFzfXLyaH6G1rfIIPT_0Aff98frP4Wiwvv1ws5svCslqSoqUKagkKmJGtbJQiwEAYUZWKcSkayajlICyrWspJxYRpjKSUsYYKImooD9DJzruOQ96dRt27ZMF7E2CYki6J5ISpktQZPf4PvRumGPLvdEmZkLTidEt92lH5PilFaPU6ut7EjaZEb4PS-bL6MajMHj0Zp6aH23_kczIZONsBv5yHzesmPV8ud8q_hTeevg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125816417</pqid></control><display><type>article</type><title>Characterising the allergic fungal rhinosinusitis microenvironment using full‐length 16S rRNA gene amplicon sequencing and fungal ITS sequencing</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Connell, J. T. ; Bouras, G. ; Yeo, K. ; Fenix, K. ; Cooksley, C. ; Bassiouni, A. ; Vreugde, S. ; Wormald, P. J. ; Psaltis, A. J.</creator><creatorcontrib>Connell, J. T. ; Bouras, G. ; Yeo, K. ; Fenix, K. ; Cooksley, C. ; Bassiouni, A. ; Vreugde, S. ; Wormald, P. J. ; Psaltis, A. J.</creatorcontrib><description>Introduction Allergic fungal rhinosinusitis (AFRS) is a severe phenotype of chronic rhinosinusitis with nasal polyposis (CRSwNP), characterised by localised and exaggerated type 2 inflammation. While fungal antigenic stimulation of unregulated Th2‐mediated inflammation is the core pathophysiological mechanism, the direct and synergistic role of bacteria in disease modification is a pervasive hypothesis. We set out to define the microenvironment of AFRS to elucidate virulent organisms that may be implicated in the pathophysiology of AFRS. Methodology We undertook a cross‐sectional study of AFRS patients and non‐fungal CRSwNP patients. Demographics, disease severity, culture and microbiome sequences were analysed. Multimodality microbiome sequencing included short‐read next‐generation sequencing (NGS) on the Illumina Miseq (16S rRNA and ITS) and full‐length 16S rRNA sequencing on the Oxford Nanopore Technologies GridION (ONT). Results Thirty‐two AFRS and 29 non‐fungal CRSwNP patients (NF) were included in this study. Staphylococcus aureus was the dominant organism cultured and sequenced in both AFRS and NF groups (AFRS 27.54%; NF 18.04%; p = .07). Streptococcus pneumoniae (AFRS 12.31%; NF 0.98%; p = .03) and Haemophilus influenzae (AFRS 15.03%; NF 0.24%; p = .005) were significantly more abundant in AFRS. Bacterial diversity (Shannon's index) was considerably lower in AFRS relative to NF (AFRS 0.6; NF 1.0, p = .008). Aspergillus was the most cultured fungus in AFRS (10/32, 31.3%). The AFRS sequenced mycobiome was predominantly represented by Malassezia (43.6%), Curvularia (18.5%) and Aspergillus (16.8%), while the NF mycobiome was nearly exclusively Malassezia (84.2%) with an absence of Aspergillus or dematiaceous fungi. Conclusion A low diversity, dysbiotic microenvironment dominated by Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae characterised the bacterial microbiome of AFRS, with a mycobiome abundant in Malassezia, Aspergillus and Curvularia. While Staphylococcus aureus has been previously implicated in AFRS through enterotoxin superantigen potential, Streptococcus pneumoniae and Haemophilus influenzae are novel findings that may represent alternate cross‐kingdom pathophysiological mechanisms. Sinonasal swabs from 61 patients underwent DNA extraction and multimodal gene amplicon sequencing to define the microbiome and mycobiome of AFRS. The AFRS microbiome exhibited low bacterial diversity and was dominated by Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae. The AFRS mycobiome was dominated by Malassezia, Aspergillus and dematiaceous fungi. Abbreviations: AFRS, allergic fungal rhinosinusitis; CRSwNP, chronic rhinosinusitis with nasal polyps; H. influenzae, Haemophilus influenzae; ITS, internal transcribed spacer; S.aureus, Staphylococcus aureus; S. epidermidis, Staphylococcus epidermidis; S. pneumoniae, Streptococcus pneumoniae.</description><identifier>ISSN: 0105-4538</identifier><identifier>ISSN: 1398-9995</identifier><identifier>EISSN: 1398-9995</identifier><identifier>DOI: 10.1111/all.16240</identifier><identifier>PMID: 39044721</identifier><language>eng</language><publisher>Denmark: Blackwell Publishing Ltd</publisher><subject>Adult ; Aged ; Allergic Fungal Sinusitis ; Aspergillus ; Cross-Sectional Studies ; Curvularia ; Female ; Fungi - genetics ; Fungi - immunology ; Haemophilus influenzae ; High-Throughput Nucleotide Sequencing ; Humans ; Inflammation ; Lymphocytes T ; Malassezia ; Male ; Microbiomes ; microbiota ; Microbiota - genetics ; Microenvironments ; Middle Aged ; mycobiome ; Mycoses - diagnosis ; Mycoses - immunology ; Mycoses - microbiology ; Phenotypes ; Polyposis ; Rhinitis, Allergic - diagnosis ; Rhinitis, Allergic - microbiology ; Rhinosinusitis ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; sequence analysis ; Sinusitis - diagnosis ; Sinusitis - microbiology ; Staphylococcus aureus ; Streptococcus infections ; Streptococcus pneumoniae</subject><ispartof>Allergy (Copenhagen), 2024-11, Vol.79 (11), p.3082-3094</ispartof><rights>2024 The Author(s). published by European Academy of Allergy and Clinical Immunology and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2780-f19e78e9e2a8f8b990e2e5a56392485b821c4e5c26f140625aba81122b15057e3</cites><orcidid>0000-0002-3081-5433 ; 0000-0003-4719-9785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39044721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Connell, J. T.</creatorcontrib><creatorcontrib>Bouras, G.</creatorcontrib><creatorcontrib>Yeo, K.</creatorcontrib><creatorcontrib>Fenix, K.</creatorcontrib><creatorcontrib>Cooksley, C.</creatorcontrib><creatorcontrib>Bassiouni, A.</creatorcontrib><creatorcontrib>Vreugde, S.</creatorcontrib><creatorcontrib>Wormald, P. J.</creatorcontrib><creatorcontrib>Psaltis, A. J.</creatorcontrib><title>Characterising the allergic fungal rhinosinusitis microenvironment using full‐length 16S rRNA gene amplicon sequencing and fungal ITS sequencing</title><title>Allergy (Copenhagen)</title><addtitle>Allergy</addtitle><description>Introduction Allergic fungal rhinosinusitis (AFRS) is a severe phenotype of chronic rhinosinusitis with nasal polyposis (CRSwNP), characterised by localised and exaggerated type 2 inflammation. While fungal antigenic stimulation of unregulated Th2‐mediated inflammation is the core pathophysiological mechanism, the direct and synergistic role of bacteria in disease modification is a pervasive hypothesis. We set out to define the microenvironment of AFRS to elucidate virulent organisms that may be implicated in the pathophysiology of AFRS. Methodology We undertook a cross‐sectional study of AFRS patients and non‐fungal CRSwNP patients. Demographics, disease severity, culture and microbiome sequences were analysed. Multimodality microbiome sequencing included short‐read next‐generation sequencing (NGS) on the Illumina Miseq (16S rRNA and ITS) and full‐length 16S rRNA sequencing on the Oxford Nanopore Technologies GridION (ONT). Results Thirty‐two AFRS and 29 non‐fungal CRSwNP patients (NF) were included in this study. Staphylococcus aureus was the dominant organism cultured and sequenced in both AFRS and NF groups (AFRS 27.54%; NF 18.04%; p = .07). Streptococcus pneumoniae (AFRS 12.31%; NF 0.98%; p = .03) and Haemophilus influenzae (AFRS 15.03%; NF 0.24%; p = .005) were significantly more abundant in AFRS. Bacterial diversity (Shannon's index) was considerably lower in AFRS relative to NF (AFRS 0.6; NF 1.0, p = .008). Aspergillus was the most cultured fungus in AFRS (10/32, 31.3%). The AFRS sequenced mycobiome was predominantly represented by Malassezia (43.6%), Curvularia (18.5%) and Aspergillus (16.8%), while the NF mycobiome was nearly exclusively Malassezia (84.2%) with an absence of Aspergillus or dematiaceous fungi. Conclusion A low diversity, dysbiotic microenvironment dominated by Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae characterised the bacterial microbiome of AFRS, with a mycobiome abundant in Malassezia, Aspergillus and Curvularia. While Staphylococcus aureus has been previously implicated in AFRS through enterotoxin superantigen potential, Streptococcus pneumoniae and Haemophilus influenzae are novel findings that may represent alternate cross‐kingdom pathophysiological mechanisms. Sinonasal swabs from 61 patients underwent DNA extraction and multimodal gene amplicon sequencing to define the microbiome and mycobiome of AFRS. The AFRS microbiome exhibited low bacterial diversity and was dominated by Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae. The AFRS mycobiome was dominated by Malassezia, Aspergillus and dematiaceous fungi. Abbreviations: AFRS, allergic fungal rhinosinusitis; CRSwNP, chronic rhinosinusitis with nasal polyps; H. influenzae, Haemophilus influenzae; ITS, internal transcribed spacer; S.aureus, Staphylococcus aureus; S. epidermidis, Staphylococcus epidermidis; S. pneumoniae, Streptococcus pneumoniae.</description><subject>Adult</subject><subject>Aged</subject><subject>Allergic Fungal Sinusitis</subject><subject>Aspergillus</subject><subject>Cross-Sectional Studies</subject><subject>Curvularia</subject><subject>Female</subject><subject>Fungi - genetics</subject><subject>Fungi - immunology</subject><subject>Haemophilus influenzae</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Lymphocytes T</subject><subject>Malassezia</subject><subject>Male</subject><subject>Microbiomes</subject><subject>microbiota</subject><subject>Microbiota - genetics</subject><subject>Microenvironments</subject><subject>Middle Aged</subject><subject>mycobiome</subject><subject>Mycoses - diagnosis</subject><subject>Mycoses - immunology</subject><subject>Mycoses - microbiology</subject><subject>Phenotypes</subject><subject>Polyposis</subject><subject>Rhinitis, Allergic - diagnosis</subject><subject>Rhinitis, Allergic - microbiology</subject><subject>Rhinosinusitis</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>sequence analysis</subject><subject>Sinusitis - diagnosis</subject><subject>Sinusitis - microbiology</subject><subject>Staphylococcus aureus</subject><subject>Streptococcus infections</subject><subject>Streptococcus pneumoniae</subject><issn>0105-4538</issn><issn>1398-9995</issn><issn>1398-9995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kcFO3DAQhq2Kqmyhh74AssSFHgK2Yyf2cbWiLdKqSEDPlmMmWSPH2dpJq731ERCP2Cepl4UKVWIuc5jP31jzI_SRklOa68x4f0orxskbNKOlkoVSSuyhGaFEFFyUch-9T-mOEFIzRd6h_VIRzmtGZ-hhsTLR2BGiSy50eFwBzjqInbO4nUJnPI4rF4Y8nZIbXcK9s3GA8NPFIfQQRjw9vmwn7__8vvcQunGFaXWN49W3Oe4gZGO_9s4OASf4MUGwW96E2-cFFzfXLyaH6G1rfIIPT_0Aff98frP4Wiwvv1ws5svCslqSoqUKagkKmJGtbJQiwEAYUZWKcSkayajlICyrWspJxYRpjKSUsYYKImooD9DJzruOQ96dRt27ZMF7E2CYki6J5ISpktQZPf4PvRumGPLvdEmZkLTidEt92lH5PilFaPU6ut7EjaZEb4PS-bL6MajMHj0Zp6aH23_kczIZONsBv5yHzesmPV8ud8q_hTeevg</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Connell, J. T.</creator><creator>Bouras, G.</creator><creator>Yeo, K.</creator><creator>Fenix, K.</creator><creator>Cooksley, C.</creator><creator>Bassiouni, A.</creator><creator>Vreugde, S.</creator><creator>Wormald, P. J.</creator><creator>Psaltis, A. J.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3081-5433</orcidid><orcidid>https://orcid.org/0000-0003-4719-9785</orcidid></search><sort><creationdate>202411</creationdate><title>Characterising the allergic fungal rhinosinusitis microenvironment using full‐length 16S rRNA gene amplicon sequencing and fungal ITS sequencing</title><author>Connell, J. T. ; Bouras, G. ; Yeo, K. ; Fenix, K. ; Cooksley, C. ; Bassiouni, A. ; Vreugde, S. ; Wormald, P. J. ; Psaltis, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2780-f19e78e9e2a8f8b990e2e5a56392485b821c4e5c26f140625aba81122b15057e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Allergic Fungal Sinusitis</topic><topic>Aspergillus</topic><topic>Cross-Sectional Studies</topic><topic>Curvularia</topic><topic>Female</topic><topic>Fungi - genetics</topic><topic>Fungi - immunology</topic><topic>Haemophilus influenzae</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Lymphocytes T</topic><topic>Malassezia</topic><topic>Male</topic><topic>Microbiomes</topic><topic>microbiota</topic><topic>Microbiota - genetics</topic><topic>Microenvironments</topic><topic>Middle Aged</topic><topic>mycobiome</topic><topic>Mycoses - diagnosis</topic><topic>Mycoses - immunology</topic><topic>Mycoses - microbiology</topic><topic>Phenotypes</topic><topic>Polyposis</topic><topic>Rhinitis, Allergic - diagnosis</topic><topic>Rhinitis, Allergic - microbiology</topic><topic>Rhinosinusitis</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>sequence analysis</topic><topic>Sinusitis - diagnosis</topic><topic>Sinusitis - microbiology</topic><topic>Staphylococcus aureus</topic><topic>Streptococcus infections</topic><topic>Streptococcus pneumoniae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Connell, J. T.</creatorcontrib><creatorcontrib>Bouras, G.</creatorcontrib><creatorcontrib>Yeo, K.</creatorcontrib><creatorcontrib>Fenix, K.</creatorcontrib><creatorcontrib>Cooksley, C.</creatorcontrib><creatorcontrib>Bassiouni, A.</creatorcontrib><creatorcontrib>Vreugde, S.</creatorcontrib><creatorcontrib>Wormald, P. J.</creatorcontrib><creatorcontrib>Psaltis, A. J.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Allergy (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Connell, J. T.</au><au>Bouras, G.</au><au>Yeo, K.</au><au>Fenix, K.</au><au>Cooksley, C.</au><au>Bassiouni, A.</au><au>Vreugde, S.</au><au>Wormald, P. J.</au><au>Psaltis, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterising the allergic fungal rhinosinusitis microenvironment using full‐length 16S rRNA gene amplicon sequencing and fungal ITS sequencing</atitle><jtitle>Allergy (Copenhagen)</jtitle><addtitle>Allergy</addtitle><date>2024-11</date><risdate>2024</risdate><volume>79</volume><issue>11</issue><spage>3082</spage><epage>3094</epage><pages>3082-3094</pages><issn>0105-4538</issn><issn>1398-9995</issn><eissn>1398-9995</eissn><abstract>Introduction Allergic fungal rhinosinusitis (AFRS) is a severe phenotype of chronic rhinosinusitis with nasal polyposis (CRSwNP), characterised by localised and exaggerated type 2 inflammation. While fungal antigenic stimulation of unregulated Th2‐mediated inflammation is the core pathophysiological mechanism, the direct and synergistic role of bacteria in disease modification is a pervasive hypothesis. We set out to define the microenvironment of AFRS to elucidate virulent organisms that may be implicated in the pathophysiology of AFRS. Methodology We undertook a cross‐sectional study of AFRS patients and non‐fungal CRSwNP patients. Demographics, disease severity, culture and microbiome sequences were analysed. Multimodality microbiome sequencing included short‐read next‐generation sequencing (NGS) on the Illumina Miseq (16S rRNA and ITS) and full‐length 16S rRNA sequencing on the Oxford Nanopore Technologies GridION (ONT). Results Thirty‐two AFRS and 29 non‐fungal CRSwNP patients (NF) were included in this study. Staphylococcus aureus was the dominant organism cultured and sequenced in both AFRS and NF groups (AFRS 27.54%; NF 18.04%; p = .07). Streptococcus pneumoniae (AFRS 12.31%; NF 0.98%; p = .03) and Haemophilus influenzae (AFRS 15.03%; NF 0.24%; p = .005) were significantly more abundant in AFRS. Bacterial diversity (Shannon's index) was considerably lower in AFRS relative to NF (AFRS 0.6; NF 1.0, p = .008). Aspergillus was the most cultured fungus in AFRS (10/32, 31.3%). The AFRS sequenced mycobiome was predominantly represented by Malassezia (43.6%), Curvularia (18.5%) and Aspergillus (16.8%), while the NF mycobiome was nearly exclusively Malassezia (84.2%) with an absence of Aspergillus or dematiaceous fungi. Conclusion A low diversity, dysbiotic microenvironment dominated by Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae characterised the bacterial microbiome of AFRS, with a mycobiome abundant in Malassezia, Aspergillus and Curvularia. While Staphylococcus aureus has been previously implicated in AFRS through enterotoxin superantigen potential, Streptococcus pneumoniae and Haemophilus influenzae are novel findings that may represent alternate cross‐kingdom pathophysiological mechanisms. Sinonasal swabs from 61 patients underwent DNA extraction and multimodal gene amplicon sequencing to define the microbiome and mycobiome of AFRS. The AFRS microbiome exhibited low bacterial diversity and was dominated by Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae. The AFRS mycobiome was dominated by Malassezia, Aspergillus and dematiaceous fungi. Abbreviations: AFRS, allergic fungal rhinosinusitis; CRSwNP, chronic rhinosinusitis with nasal polyps; H. influenzae, Haemophilus influenzae; ITS, internal transcribed spacer; S.aureus, Staphylococcus aureus; S. epidermidis, Staphylococcus epidermidis; S. pneumoniae, Streptococcus pneumoniae.</abstract><cop>Denmark</cop><pub>Blackwell Publishing Ltd</pub><pmid>39044721</pmid><doi>10.1111/all.16240</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3081-5433</orcidid><orcidid>https://orcid.org/0000-0003-4719-9785</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0105-4538
ispartof Allergy (Copenhagen), 2024-11, Vol.79 (11), p.3082-3094
issn 0105-4538
1398-9995
1398-9995
language eng
recordid cdi_proquest_miscellaneous_3084029307
source Wiley-Blackwell Read & Publish Collection
subjects Adult
Aged
Allergic Fungal Sinusitis
Aspergillus
Cross-Sectional Studies
Curvularia
Female
Fungi - genetics
Fungi - immunology
Haemophilus influenzae
High-Throughput Nucleotide Sequencing
Humans
Inflammation
Lymphocytes T
Malassezia
Male
Microbiomes
microbiota
Microbiota - genetics
Microenvironments
Middle Aged
mycobiome
Mycoses - diagnosis
Mycoses - immunology
Mycoses - microbiology
Phenotypes
Polyposis
Rhinitis, Allergic - diagnosis
Rhinitis, Allergic - microbiology
Rhinosinusitis
RNA, Ribosomal, 16S - genetics
rRNA 16S
sequence analysis
Sinusitis - diagnosis
Sinusitis - microbiology
Staphylococcus aureus
Streptococcus infections
Streptococcus pneumoniae
title Characterising the allergic fungal rhinosinusitis microenvironment using full‐length 16S rRNA gene amplicon sequencing and fungal ITS sequencing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterising%20the%20allergic%20fungal%20rhinosinusitis%20microenvironment%20using%20full%E2%80%90length%2016S%20rRNA%20gene%20amplicon%20sequencing%20and%20fungal%20ITS%20sequencing&rft.jtitle=Allergy%20(Copenhagen)&rft.au=Connell,%20J.%20T.&rft.date=2024-11&rft.volume=79&rft.issue=11&rft.spage=3082&rft.epage=3094&rft.pages=3082-3094&rft.issn=0105-4538&rft.eissn=1398-9995&rft_id=info:doi/10.1111/all.16240&rft_dat=%3Cproquest_cross%3E3125816417%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2780-f19e78e9e2a8f8b990e2e5a56392485b821c4e5c26f140625aba81122b15057e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125816417&rft_id=info:pmid/39044721&rfr_iscdi=true