Loading…
Power-law growth models explain incidences and sizes of pancreatic cancer precursor lesions and confirm spatial genomic findings
Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence suggests that pancreatic intraepithelial neoplasia (PanIN), a microscopic precursor lesion that gives rise to pancreatic cancer, is larger and more prevalent than previously believed. Better understanding of the growth-law...
Saved in:
Published in: | Science advances 2024-07, Vol.10 (30), p.eado5103 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c220t-b6e04040ddcd77a63e8f04c4f6ea73a7d73fa8e14b6c9884fab88ac8a956d1d3 |
container_end_page | |
container_issue | 30 |
container_start_page | eado5103 |
container_title | Science advances |
container_volume | 10 |
creator | Kiemen, Ashley L Wu, Pei-Hsun Braxton, Alicia M Cornish, Toby C Hruban, Ralph H Wood, Laura D Wirtz, Denis Zwicker, David |
description | Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence suggests that pancreatic intraepithelial neoplasia (PanIN), a microscopic precursor lesion that gives rise to pancreatic cancer, is larger and more prevalent than previously believed. Better understanding of the growth-law dynamics of PanINs may improve our ability to understand how a miniscule fraction makes the transition to invasive cancer. Here, using three-dimensional tissue mapping, we analyzed >1000 PanINs and found that lesion size is distributed according to a power law. Our data suggest that in bulk, PanIN size can be predicted by general growth behavior without consideration for the heterogeneity of the pancreatic microenvironment or an individual's age, history, or lifestyle. Our models suggest that intraductal spread and fusing of lesions drive our observed size distribution. This analysis lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, and molecular features to understand tumorigenesis and demonstrates the utility of combining experimental measurement with dynamic modeling in understanding tumorigenesis. |
doi_str_mv | 10.1126/sciadv.ado5103 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085113768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085113768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-b6e04040ddcd77a63e8f04c4f6ea73a7d73fa8e14b6c9884fab88ac8a956d1d3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EgqqwMiKPLCl2nNjuiBBfUiUY2KMX-7kYJXawWwpM_HSCWhB6w7vDuXc4hJxyNuO8lBfZeLBvM7Cx5kzskUkpVF2UdaX3_-UjcpLzC2OMV1LWfH5IjsSc1VopMSFfj3GDqehgQ5cpblbPtI8Wu0zxfejAB-qD8RaDwUwhWJr955iiowMEkxBW3lAzRkx0SGjWKcdEO8w-hm3BxOB86mkeRhY6usQQ-7HkfLA-LPMxOXDQZTzZ_Sl5url-urorFg-391eXi8KUJVsVrURWjWetsUqBFKgdq0zlJIISoKwSDjTyqpVmrnXloNUajIZ5LS23YkrOt7NDiq9rzKum99lg10HAuM6NYLrmXCipR3S2RU2KOSd0zZB8D-mj4az58d5svTc772PhbLe9bnu0f_ivZfEN4VeD7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085113768</pqid></control><display><type>article</type><title>Power-law growth models explain incidences and sizes of pancreatic cancer precursor lesions and confirm spatial genomic findings</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Kiemen, Ashley L ; Wu, Pei-Hsun ; Braxton, Alicia M ; Cornish, Toby C ; Hruban, Ralph H ; Wood, Laura D ; Wirtz, Denis ; Zwicker, David</creator><creatorcontrib>Kiemen, Ashley L ; Wu, Pei-Hsun ; Braxton, Alicia M ; Cornish, Toby C ; Hruban, Ralph H ; Wood, Laura D ; Wirtz, Denis ; Zwicker, David</creatorcontrib><description>Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence suggests that pancreatic intraepithelial neoplasia (PanIN), a microscopic precursor lesion that gives rise to pancreatic cancer, is larger and more prevalent than previously believed. Better understanding of the growth-law dynamics of PanINs may improve our ability to understand how a miniscule fraction makes the transition to invasive cancer. Here, using three-dimensional tissue mapping, we analyzed >1000 PanINs and found that lesion size is distributed according to a power law. Our data suggest that in bulk, PanIN size can be predicted by general growth behavior without consideration for the heterogeneity of the pancreatic microenvironment or an individual's age, history, or lifestyle. Our models suggest that intraductal spread and fusing of lesions drive our observed size distribution. This analysis lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, and molecular features to understand tumorigenesis and demonstrates the utility of combining experimental measurement with dynamic modeling in understanding tumorigenesis.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.ado5103</identifier><identifier>PMID: 39058773</identifier><language>eng</language><publisher>United States</publisher><subject>Carcinoma in Situ - epidemiology ; Carcinoma in Situ - genetics ; Carcinoma in Situ - pathology ; Carcinoma, Pancreatic Ductal - genetics ; Carcinoma, Pancreatic Ductal - pathology ; Genomics - methods ; Humans ; Incidence ; Models, Theoretical ; Pancreatic Neoplasms - epidemiology ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - pathology ; Precancerous Conditions - genetics ; Precancerous Conditions - pathology</subject><ispartof>Science advances, 2024-07, Vol.10 (30), p.eado5103</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-b6e04040ddcd77a63e8f04c4f6ea73a7d73fa8e14b6c9884fab88ac8a956d1d3</cites><orcidid>0000-0002-3909-3334 ; 0000-0003-0214-2320 ; 0000-0002-7371-2960 ; 0000-0002-6281-2616 ; 0000-0002-1902-2109 ; 0000-0003-4554-5672 ; 0000-0001-6147-3045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2870,2871,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39058773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiemen, Ashley L</creatorcontrib><creatorcontrib>Wu, Pei-Hsun</creatorcontrib><creatorcontrib>Braxton, Alicia M</creatorcontrib><creatorcontrib>Cornish, Toby C</creatorcontrib><creatorcontrib>Hruban, Ralph H</creatorcontrib><creatorcontrib>Wood, Laura D</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><creatorcontrib>Zwicker, David</creatorcontrib><title>Power-law growth models explain incidences and sizes of pancreatic cancer precursor lesions and confirm spatial genomic findings</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence suggests that pancreatic intraepithelial neoplasia (PanIN), a microscopic precursor lesion that gives rise to pancreatic cancer, is larger and more prevalent than previously believed. Better understanding of the growth-law dynamics of PanINs may improve our ability to understand how a miniscule fraction makes the transition to invasive cancer. Here, using three-dimensional tissue mapping, we analyzed >1000 PanINs and found that lesion size is distributed according to a power law. Our data suggest that in bulk, PanIN size can be predicted by general growth behavior without consideration for the heterogeneity of the pancreatic microenvironment or an individual's age, history, or lifestyle. Our models suggest that intraductal spread and fusing of lesions drive our observed size distribution. This analysis lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, and molecular features to understand tumorigenesis and demonstrates the utility of combining experimental measurement with dynamic modeling in understanding tumorigenesis.</description><subject>Carcinoma in Situ - epidemiology</subject><subject>Carcinoma in Situ - genetics</subject><subject>Carcinoma in Situ - pathology</subject><subject>Carcinoma, Pancreatic Ductal - genetics</subject><subject>Carcinoma, Pancreatic Ductal - pathology</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Incidence</subject><subject>Models, Theoretical</subject><subject>Pancreatic Neoplasms - epidemiology</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Precancerous Conditions - genetics</subject><subject>Precancerous Conditions - pathology</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EgqqwMiKPLCl2nNjuiBBfUiUY2KMX-7kYJXawWwpM_HSCWhB6w7vDuXc4hJxyNuO8lBfZeLBvM7Cx5kzskUkpVF2UdaX3_-UjcpLzC2OMV1LWfH5IjsSc1VopMSFfj3GDqehgQ5cpblbPtI8Wu0zxfejAB-qD8RaDwUwhWJr955iiowMEkxBW3lAzRkx0SGjWKcdEO8w-hm3BxOB86mkeRhY6usQQ-7HkfLA-LPMxOXDQZTzZ_Sl5url-urorFg-391eXi8KUJVsVrURWjWetsUqBFKgdq0zlJIISoKwSDjTyqpVmrnXloNUajIZ5LS23YkrOt7NDiq9rzKum99lg10HAuM6NYLrmXCipR3S2RU2KOSd0zZB8D-mj4az58d5svTc772PhbLe9bnu0f_ivZfEN4VeD7g</recordid><startdate>20240726</startdate><enddate>20240726</enddate><creator>Kiemen, Ashley L</creator><creator>Wu, Pei-Hsun</creator><creator>Braxton, Alicia M</creator><creator>Cornish, Toby C</creator><creator>Hruban, Ralph H</creator><creator>Wood, Laura D</creator><creator>Wirtz, Denis</creator><creator>Zwicker, David</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3909-3334</orcidid><orcidid>https://orcid.org/0000-0003-0214-2320</orcidid><orcidid>https://orcid.org/0000-0002-7371-2960</orcidid><orcidid>https://orcid.org/0000-0002-6281-2616</orcidid><orcidid>https://orcid.org/0000-0002-1902-2109</orcidid><orcidid>https://orcid.org/0000-0003-4554-5672</orcidid><orcidid>https://orcid.org/0000-0001-6147-3045</orcidid></search><sort><creationdate>20240726</creationdate><title>Power-law growth models explain incidences and sizes of pancreatic cancer precursor lesions and confirm spatial genomic findings</title><author>Kiemen, Ashley L ; Wu, Pei-Hsun ; Braxton, Alicia M ; Cornish, Toby C ; Hruban, Ralph H ; Wood, Laura D ; Wirtz, Denis ; Zwicker, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-b6e04040ddcd77a63e8f04c4f6ea73a7d73fa8e14b6c9884fab88ac8a956d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carcinoma in Situ - epidemiology</topic><topic>Carcinoma in Situ - genetics</topic><topic>Carcinoma in Situ - pathology</topic><topic>Carcinoma, Pancreatic Ductal - genetics</topic><topic>Carcinoma, Pancreatic Ductal - pathology</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Incidence</topic><topic>Models, Theoretical</topic><topic>Pancreatic Neoplasms - epidemiology</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Precancerous Conditions - genetics</topic><topic>Precancerous Conditions - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiemen, Ashley L</creatorcontrib><creatorcontrib>Wu, Pei-Hsun</creatorcontrib><creatorcontrib>Braxton, Alicia M</creatorcontrib><creatorcontrib>Cornish, Toby C</creatorcontrib><creatorcontrib>Hruban, Ralph H</creatorcontrib><creatorcontrib>Wood, Laura D</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><creatorcontrib>Zwicker, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiemen, Ashley L</au><au>Wu, Pei-Hsun</au><au>Braxton, Alicia M</au><au>Cornish, Toby C</au><au>Hruban, Ralph H</au><au>Wood, Laura D</au><au>Wirtz, Denis</au><au>Zwicker, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power-law growth models explain incidences and sizes of pancreatic cancer precursor lesions and confirm spatial genomic findings</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-07-26</date><risdate>2024</risdate><volume>10</volume><issue>30</issue><spage>eado5103</spage><pages>eado5103-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence suggests that pancreatic intraepithelial neoplasia (PanIN), a microscopic precursor lesion that gives rise to pancreatic cancer, is larger and more prevalent than previously believed. Better understanding of the growth-law dynamics of PanINs may improve our ability to understand how a miniscule fraction makes the transition to invasive cancer. Here, using three-dimensional tissue mapping, we analyzed >1000 PanINs and found that lesion size is distributed according to a power law. Our data suggest that in bulk, PanIN size can be predicted by general growth behavior without consideration for the heterogeneity of the pancreatic microenvironment or an individual's age, history, or lifestyle. Our models suggest that intraductal spread and fusing of lesions drive our observed size distribution. This analysis lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, and molecular features to understand tumorigenesis and demonstrates the utility of combining experimental measurement with dynamic modeling in understanding tumorigenesis.</abstract><cop>United States</cop><pmid>39058773</pmid><doi>10.1126/sciadv.ado5103</doi><orcidid>https://orcid.org/0000-0002-3909-3334</orcidid><orcidid>https://orcid.org/0000-0003-0214-2320</orcidid><orcidid>https://orcid.org/0000-0002-7371-2960</orcidid><orcidid>https://orcid.org/0000-0002-6281-2616</orcidid><orcidid>https://orcid.org/0000-0002-1902-2109</orcidid><orcidid>https://orcid.org/0000-0003-4554-5672</orcidid><orcidid>https://orcid.org/0000-0001-6147-3045</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2024-07, Vol.10 (30), p.eado5103 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_3085113768 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | Carcinoma in Situ - epidemiology Carcinoma in Situ - genetics Carcinoma in Situ - pathology Carcinoma, Pancreatic Ductal - genetics Carcinoma, Pancreatic Ductal - pathology Genomics - methods Humans Incidence Models, Theoretical Pancreatic Neoplasms - epidemiology Pancreatic Neoplasms - genetics Pancreatic Neoplasms - pathology Precancerous Conditions - genetics Precancerous Conditions - pathology |
title | Power-law growth models explain incidences and sizes of pancreatic cancer precursor lesions and confirm spatial genomic findings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power-law%20growth%20models%20explain%20incidences%20and%20sizes%20of%20pancreatic%20cancer%20precursor%20lesions%20and%20confirm%20spatial%20genomic%20findings&rft.jtitle=Science%20advances&rft.au=Kiemen,%20Ashley%20L&rft.date=2024-07-26&rft.volume=10&rft.issue=30&rft.spage=eado5103&rft.pages=eado5103-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.ado5103&rft_dat=%3Cproquest_cross%3E3085113768%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c220t-b6e04040ddcd77a63e8f04c4f6ea73a7d73fa8e14b6c9884fab88ac8a956d1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085113768&rft_id=info:pmid/39058773&rfr_iscdi=true |