Loading…

Machine Learning Analysis in Diffusion Kurtosis Imaging for Discriminating Pediatric Posterior Fossa Tumors: A Repeatability and Accuracy Pilot Study

: Differentiating pediatric posterior fossa (PF) tumors such as medulloblastoma (MB), ependymoma (EP), and pilocytic astrocytoma (PA) remains relevant, because of important treatment and prognostic implications. Diffusion kurtosis imaging (DKI) has not yet been investigated for discrimination of ped...

Full description

Saved in:
Bibliographic Details
Published in:Cancers 2024-07, Vol.16 (14), p.2578
Main Authors: Voicu, Ioan Paul, Dotta, Francesco, Napolitano, Antonio, Caulo, Massimo, Piccirilli, Eleonora, D'Orazio, Claudia, Carai, Andrea, Miele, Evelina, Vinci, Maria, Rossi, Sabrina, Cacchione, Antonella, Vennarini, Sabina, Del Baldo, Giada, Mastronuzzi, Angela, Tomà, Paolo, Colafati, Giovanna Stefania
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c317t-84ed8dc5030db0a5a04d1ed2d6c7fd3ed8397aeb14378df070e9321fd9c95b313
container_end_page
container_issue 14
container_start_page 2578
container_title Cancers
container_volume 16
creator Voicu, Ioan Paul
Dotta, Francesco
Napolitano, Antonio
Caulo, Massimo
Piccirilli, Eleonora
D'Orazio, Claudia
Carai, Andrea
Miele, Evelina
Vinci, Maria
Rossi, Sabrina
Cacchione, Antonella
Vennarini, Sabina
Del Baldo, Giada
Mastronuzzi, Angela
Tomà, Paolo
Colafati, Giovanna Stefania
description : Differentiating pediatric posterior fossa (PF) tumors such as medulloblastoma (MB), ependymoma (EP), and pilocytic astrocytoma (PA) remains relevant, because of important treatment and prognostic implications. Diffusion kurtosis imaging (DKI) has not yet been investigated for discrimination of pediatric PF tumors. Estimating diffusion values from whole-tumor-based (VOI) segmentations may improve diffusion measurement repeatability compared to conventional region-of-interest (ROI) approaches. Our purpose was to compare repeatability between ROI and VOI DKI-derived diffusion measurements and assess DKI accuracy in discriminating among pediatric PF tumors. : We retrospectively analyzed 34 children (M, F, mean age 7.48 years) with PF tumors who underwent preoperative examination on a 3 Tesla magnet, including DKI. For each patient, two neuroradiologists independently segmented the whole solid tumor, the ROI of the area of maximum tumor diameter, and a small 5 mm ROI. The automated analysis pipeline included inter-observer variability, statistical, and machine learning (ML) analyses. We evaluated inter-observer variability with coefficient of variation (COV) and Bland-Altman plots. We estimated DKI metrics accuracy in discriminating among tumor histology with MANOVA analysis. In order to account for class imbalances, we applied SMOTE to balance the dataset. Finally, we performed a Random Forest (RF) machine learning classification analysis based on all DKI metrics from the SMOTE dataset by partitioning 70/30 the training and testing cohort. : Tumor histology included medulloblastoma (15), pilocytic astrocytoma (14), and ependymoma (5). VOI-based measurements presented lower variability than ROI-based measurements across all DKI metrics and were used for the analysis. DKI-derived metrics could accurately discriminate between tumor subtypes (Pillai's trace: < 0.001). SMOTE generated 11 synthetic observations (10 EP and 1 PA), resulting in a balanced dataset with 45 instances (34 original and 11 synthetic). ML analysis yielded an accuracy of 0.928, which correctly predicted all but one lesion in the testing set. : VOI-based measurements presented improved repeatability compared to ROI-based measurements across all diffusion metrics. An ML classification algorithm resulted accurate in discriminating PF tumors on a SMOTE-generated dataset. ML techniques based on DKI-derived metrics are useful for the discrimination of pediatric PF tumors.
doi_str_mv 10.3390/cancers16142578
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085115214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803764015</galeid><sourcerecordid>A803764015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-84ed8dc5030db0a5a04d1ed2d6c7fd3ed8397aeb14378df070e9321fd9c95b313</originalsourceid><addsrcrecordid>eNptkk1v1DAQhi0EotXSMzdkiQuXbe04iRNuq5bSikWsoJyjiT1eXCX2YjuH_BD-L05bvirsg62Z5x15Xg8hLzk7FaJlZwqcwhB5zcuiks0TclwwWazrui2f_nU_Iicx3rK8hOCyls_JUVbXvODymPz4COqbdUi3CMFZt6cbB8McbaTW0QtrzBStd_TDFJJfotcj7BfM-JDTUQU7WgdpCe1QW0jBKrrzMWGwGbn0MQK9mUYf4lu6oZ_xgJCgt4NNMwWn6UapKYCa6c4OPtEvadLzC_LMwBDx5OFcka-X727Or9bbT--vzzfbtcqdpHVTom60qphgumdQASs1R13oWkmjRU6KVgL2vBSy0YZJhq0ouNGtaqtecLEib-7rHoL_PmFM3ZhbwmEAh36KnWBNxXlV5AIr8voReuunkL26o0pZyEYUf6g9DNhZZ3zKvS1Fu03DhKxLxqtMnf6HylvjaJV3aGyO_yM4uxeokP0MaLpD9h3C3HHWLbPQPZqFrHj18NypH1H_5n_9vPgJ3biw8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084727832</pqid></control><display><type>article</type><title>Machine Learning Analysis in Diffusion Kurtosis Imaging for Discriminating Pediatric Posterior Fossa Tumors: A Repeatability and Accuracy Pilot Study</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Voicu, Ioan Paul ; Dotta, Francesco ; Napolitano, Antonio ; Caulo, Massimo ; Piccirilli, Eleonora ; D'Orazio, Claudia ; Carai, Andrea ; Miele, Evelina ; Vinci, Maria ; Rossi, Sabrina ; Cacchione, Antonella ; Vennarini, Sabina ; Del Baldo, Giada ; Mastronuzzi, Angela ; Tomà, Paolo ; Colafati, Giovanna Stefania</creator><creatorcontrib>Voicu, Ioan Paul ; Dotta, Francesco ; Napolitano, Antonio ; Caulo, Massimo ; Piccirilli, Eleonora ; D'Orazio, Claudia ; Carai, Andrea ; Miele, Evelina ; Vinci, Maria ; Rossi, Sabrina ; Cacchione, Antonella ; Vennarini, Sabina ; Del Baldo, Giada ; Mastronuzzi, Angela ; Tomà, Paolo ; Colafati, Giovanna Stefania</creatorcontrib><description>: Differentiating pediatric posterior fossa (PF) tumors such as medulloblastoma (MB), ependymoma (EP), and pilocytic astrocytoma (PA) remains relevant, because of important treatment and prognostic implications. Diffusion kurtosis imaging (DKI) has not yet been investigated for discrimination of pediatric PF tumors. Estimating diffusion values from whole-tumor-based (VOI) segmentations may improve diffusion measurement repeatability compared to conventional region-of-interest (ROI) approaches. Our purpose was to compare repeatability between ROI and VOI DKI-derived diffusion measurements and assess DKI accuracy in discriminating among pediatric PF tumors. : We retrospectively analyzed 34 children (M, F, mean age 7.48 years) with PF tumors who underwent preoperative examination on a 3 Tesla magnet, including DKI. For each patient, two neuroradiologists independently segmented the whole solid tumor, the ROI of the area of maximum tumor diameter, and a small 5 mm ROI. The automated analysis pipeline included inter-observer variability, statistical, and machine learning (ML) analyses. We evaluated inter-observer variability with coefficient of variation (COV) and Bland-Altman plots. We estimated DKI metrics accuracy in discriminating among tumor histology with MANOVA analysis. In order to account for class imbalances, we applied SMOTE to balance the dataset. Finally, we performed a Random Forest (RF) machine learning classification analysis based on all DKI metrics from the SMOTE dataset by partitioning 70/30 the training and testing cohort. : Tumor histology included medulloblastoma (15), pilocytic astrocytoma (14), and ependymoma (5). VOI-based measurements presented lower variability than ROI-based measurements across all DKI metrics and were used for the analysis. DKI-derived metrics could accurately discriminate between tumor subtypes (Pillai's trace: &lt; 0.001). SMOTE generated 11 synthetic observations (10 EP and 1 PA), resulting in a balanced dataset with 45 instances (34 original and 11 synthetic). ML analysis yielded an accuracy of 0.928, which correctly predicted all but one lesion in the testing set. : VOI-based measurements presented improved repeatability compared to ROI-based measurements across all diffusion metrics. An ML classification algorithm resulted accurate in discriminating PF tumors on a SMOTE-generated dataset. ML techniques based on DKI-derived metrics are useful for the discrimination of pediatric PF tumors.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers16142578</identifier><identifier>PMID: 39061217</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Astrocytoma ; Automation ; Brain cancer ; Brain tumors ; Classification ; Diffusion ; Gliomas ; Kurtosis ; Learning algorithms ; Machine learning ; Medical care ; Medical imaging equipment ; Medulloblastoma ; Observational learning ; Patients ; Pediatrics ; Probability distribution ; Quality management ; Solid tumors ; Statistical analysis ; Tissues ; Tumors</subject><ispartof>Cancers, 2024-07, Vol.16 (14), p.2578</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-84ed8dc5030db0a5a04d1ed2d6c7fd3ed8397aeb14378df070e9321fd9c95b313</cites><orcidid>0000-0001-6147-9623 ; 0000-0002-0264-8519 ; 0000-0002-4747-1032 ; 0000-0002-0158-4760 ; 0000-0002-7952-6771 ; 0000-0002-4507-2740 ; 0000-0002-5203-7855 ; 0000-0003-3540-4331 ; 0000-0002-1142-4904 ; 0000-0001-5028-5102 ; 0000-0003-4901-9952 ; 0000-0002-4408-2373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084727832/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084727832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,36992,44569,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39061217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voicu, Ioan Paul</creatorcontrib><creatorcontrib>Dotta, Francesco</creatorcontrib><creatorcontrib>Napolitano, Antonio</creatorcontrib><creatorcontrib>Caulo, Massimo</creatorcontrib><creatorcontrib>Piccirilli, Eleonora</creatorcontrib><creatorcontrib>D'Orazio, Claudia</creatorcontrib><creatorcontrib>Carai, Andrea</creatorcontrib><creatorcontrib>Miele, Evelina</creatorcontrib><creatorcontrib>Vinci, Maria</creatorcontrib><creatorcontrib>Rossi, Sabrina</creatorcontrib><creatorcontrib>Cacchione, Antonella</creatorcontrib><creatorcontrib>Vennarini, Sabina</creatorcontrib><creatorcontrib>Del Baldo, Giada</creatorcontrib><creatorcontrib>Mastronuzzi, Angela</creatorcontrib><creatorcontrib>Tomà, Paolo</creatorcontrib><creatorcontrib>Colafati, Giovanna Stefania</creatorcontrib><title>Machine Learning Analysis in Diffusion Kurtosis Imaging for Discriminating Pediatric Posterior Fossa Tumors: A Repeatability and Accuracy Pilot Study</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>: Differentiating pediatric posterior fossa (PF) tumors such as medulloblastoma (MB), ependymoma (EP), and pilocytic astrocytoma (PA) remains relevant, because of important treatment and prognostic implications. Diffusion kurtosis imaging (DKI) has not yet been investigated for discrimination of pediatric PF tumors. Estimating diffusion values from whole-tumor-based (VOI) segmentations may improve diffusion measurement repeatability compared to conventional region-of-interest (ROI) approaches. Our purpose was to compare repeatability between ROI and VOI DKI-derived diffusion measurements and assess DKI accuracy in discriminating among pediatric PF tumors. : We retrospectively analyzed 34 children (M, F, mean age 7.48 years) with PF tumors who underwent preoperative examination on a 3 Tesla magnet, including DKI. For each patient, two neuroradiologists independently segmented the whole solid tumor, the ROI of the area of maximum tumor diameter, and a small 5 mm ROI. The automated analysis pipeline included inter-observer variability, statistical, and machine learning (ML) analyses. We evaluated inter-observer variability with coefficient of variation (COV) and Bland-Altman plots. We estimated DKI metrics accuracy in discriminating among tumor histology with MANOVA analysis. In order to account for class imbalances, we applied SMOTE to balance the dataset. Finally, we performed a Random Forest (RF) machine learning classification analysis based on all DKI metrics from the SMOTE dataset by partitioning 70/30 the training and testing cohort. : Tumor histology included medulloblastoma (15), pilocytic astrocytoma (14), and ependymoma (5). VOI-based measurements presented lower variability than ROI-based measurements across all DKI metrics and were used for the analysis. DKI-derived metrics could accurately discriminate between tumor subtypes (Pillai's trace: &lt; 0.001). SMOTE generated 11 synthetic observations (10 EP and 1 PA), resulting in a balanced dataset with 45 instances (34 original and 11 synthetic). ML analysis yielded an accuracy of 0.928, which correctly predicted all but one lesion in the testing set. : VOI-based measurements presented improved repeatability compared to ROI-based measurements across all diffusion metrics. An ML classification algorithm resulted accurate in discriminating PF tumors on a SMOTE-generated dataset. ML techniques based on DKI-derived metrics are useful for the discrimination of pediatric PF tumors.</description><subject>Astrocytoma</subject><subject>Automation</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>Classification</subject><subject>Diffusion</subject><subject>Gliomas</subject><subject>Kurtosis</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical care</subject><subject>Medical imaging equipment</subject><subject>Medulloblastoma</subject><subject>Observational learning</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Probability distribution</subject><subject>Quality management</subject><subject>Solid tumors</subject><subject>Statistical analysis</subject><subject>Tissues</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkk1v1DAQhi0EotXSMzdkiQuXbe04iRNuq5bSikWsoJyjiT1eXCX2YjuH_BD-L05bvirsg62Z5x15Xg8hLzk7FaJlZwqcwhB5zcuiks0TclwwWazrui2f_nU_Iicx3rK8hOCyls_JUVbXvODymPz4COqbdUi3CMFZt6cbB8McbaTW0QtrzBStd_TDFJJfotcj7BfM-JDTUQU7WgdpCe1QW0jBKrrzMWGwGbn0MQK9mUYf4lu6oZ_xgJCgt4NNMwWn6UapKYCa6c4OPtEvadLzC_LMwBDx5OFcka-X727Or9bbT--vzzfbtcqdpHVTom60qphgumdQASs1R13oWkmjRU6KVgL2vBSy0YZJhq0ouNGtaqtecLEib-7rHoL_PmFM3ZhbwmEAh36KnWBNxXlV5AIr8voReuunkL26o0pZyEYUf6g9DNhZZ3zKvS1Fu03DhKxLxqtMnf6HylvjaJV3aGyO_yM4uxeokP0MaLpD9h3C3HHWLbPQPZqFrHj18NypH1H_5n_9vPgJ3biw8A</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Voicu, Ioan Paul</creator><creator>Dotta, Francesco</creator><creator>Napolitano, Antonio</creator><creator>Caulo, Massimo</creator><creator>Piccirilli, Eleonora</creator><creator>D'Orazio, Claudia</creator><creator>Carai, Andrea</creator><creator>Miele, Evelina</creator><creator>Vinci, Maria</creator><creator>Rossi, Sabrina</creator><creator>Cacchione, Antonella</creator><creator>Vennarini, Sabina</creator><creator>Del Baldo, Giada</creator><creator>Mastronuzzi, Angela</creator><creator>Tomà, Paolo</creator><creator>Colafati, Giovanna Stefania</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6147-9623</orcidid><orcidid>https://orcid.org/0000-0002-0264-8519</orcidid><orcidid>https://orcid.org/0000-0002-4747-1032</orcidid><orcidid>https://orcid.org/0000-0002-0158-4760</orcidid><orcidid>https://orcid.org/0000-0002-7952-6771</orcidid><orcidid>https://orcid.org/0000-0002-4507-2740</orcidid><orcidid>https://orcid.org/0000-0002-5203-7855</orcidid><orcidid>https://orcid.org/0000-0003-3540-4331</orcidid><orcidid>https://orcid.org/0000-0002-1142-4904</orcidid><orcidid>https://orcid.org/0000-0001-5028-5102</orcidid><orcidid>https://orcid.org/0000-0003-4901-9952</orcidid><orcidid>https://orcid.org/0000-0002-4408-2373</orcidid></search><sort><creationdate>20240718</creationdate><title>Machine Learning Analysis in Diffusion Kurtosis Imaging for Discriminating Pediatric Posterior Fossa Tumors: A Repeatability and Accuracy Pilot Study</title><author>Voicu, Ioan Paul ; Dotta, Francesco ; Napolitano, Antonio ; Caulo, Massimo ; Piccirilli, Eleonora ; D'Orazio, Claudia ; Carai, Andrea ; Miele, Evelina ; Vinci, Maria ; Rossi, Sabrina ; Cacchione, Antonella ; Vennarini, Sabina ; Del Baldo, Giada ; Mastronuzzi, Angela ; Tomà, Paolo ; Colafati, Giovanna Stefania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-84ed8dc5030db0a5a04d1ed2d6c7fd3ed8397aeb14378df070e9321fd9c95b313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrocytoma</topic><topic>Automation</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>Classification</topic><topic>Diffusion</topic><topic>Gliomas</topic><topic>Kurtosis</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical care</topic><topic>Medical imaging equipment</topic><topic>Medulloblastoma</topic><topic>Observational learning</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Probability distribution</topic><topic>Quality management</topic><topic>Solid tumors</topic><topic>Statistical analysis</topic><topic>Tissues</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voicu, Ioan Paul</creatorcontrib><creatorcontrib>Dotta, Francesco</creatorcontrib><creatorcontrib>Napolitano, Antonio</creatorcontrib><creatorcontrib>Caulo, Massimo</creatorcontrib><creatorcontrib>Piccirilli, Eleonora</creatorcontrib><creatorcontrib>D'Orazio, Claudia</creatorcontrib><creatorcontrib>Carai, Andrea</creatorcontrib><creatorcontrib>Miele, Evelina</creatorcontrib><creatorcontrib>Vinci, Maria</creatorcontrib><creatorcontrib>Rossi, Sabrina</creatorcontrib><creatorcontrib>Cacchione, Antonella</creatorcontrib><creatorcontrib>Vennarini, Sabina</creatorcontrib><creatorcontrib>Del Baldo, Giada</creatorcontrib><creatorcontrib>Mastronuzzi, Angela</creatorcontrib><creatorcontrib>Tomà, Paolo</creatorcontrib><creatorcontrib>Colafati, Giovanna Stefania</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voicu, Ioan Paul</au><au>Dotta, Francesco</au><au>Napolitano, Antonio</au><au>Caulo, Massimo</au><au>Piccirilli, Eleonora</au><au>D'Orazio, Claudia</au><au>Carai, Andrea</au><au>Miele, Evelina</au><au>Vinci, Maria</au><au>Rossi, Sabrina</au><au>Cacchione, Antonella</au><au>Vennarini, Sabina</au><au>Del Baldo, Giada</au><au>Mastronuzzi, Angela</au><au>Tomà, Paolo</au><au>Colafati, Giovanna Stefania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Analysis in Diffusion Kurtosis Imaging for Discriminating Pediatric Posterior Fossa Tumors: A Repeatability and Accuracy Pilot Study</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2024-07-18</date><risdate>2024</risdate><volume>16</volume><issue>14</issue><spage>2578</spage><pages>2578-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>: Differentiating pediatric posterior fossa (PF) tumors such as medulloblastoma (MB), ependymoma (EP), and pilocytic astrocytoma (PA) remains relevant, because of important treatment and prognostic implications. Diffusion kurtosis imaging (DKI) has not yet been investigated for discrimination of pediatric PF tumors. Estimating diffusion values from whole-tumor-based (VOI) segmentations may improve diffusion measurement repeatability compared to conventional region-of-interest (ROI) approaches. Our purpose was to compare repeatability between ROI and VOI DKI-derived diffusion measurements and assess DKI accuracy in discriminating among pediatric PF tumors. : We retrospectively analyzed 34 children (M, F, mean age 7.48 years) with PF tumors who underwent preoperative examination on a 3 Tesla magnet, including DKI. For each patient, two neuroradiologists independently segmented the whole solid tumor, the ROI of the area of maximum tumor diameter, and a small 5 mm ROI. The automated analysis pipeline included inter-observer variability, statistical, and machine learning (ML) analyses. We evaluated inter-observer variability with coefficient of variation (COV) and Bland-Altman plots. We estimated DKI metrics accuracy in discriminating among tumor histology with MANOVA analysis. In order to account for class imbalances, we applied SMOTE to balance the dataset. Finally, we performed a Random Forest (RF) machine learning classification analysis based on all DKI metrics from the SMOTE dataset by partitioning 70/30 the training and testing cohort. : Tumor histology included medulloblastoma (15), pilocytic astrocytoma (14), and ependymoma (5). VOI-based measurements presented lower variability than ROI-based measurements across all DKI metrics and were used for the analysis. DKI-derived metrics could accurately discriminate between tumor subtypes (Pillai's trace: &lt; 0.001). SMOTE generated 11 synthetic observations (10 EP and 1 PA), resulting in a balanced dataset with 45 instances (34 original and 11 synthetic). ML analysis yielded an accuracy of 0.928, which correctly predicted all but one lesion in the testing set. : VOI-based measurements presented improved repeatability compared to ROI-based measurements across all diffusion metrics. An ML classification algorithm resulted accurate in discriminating PF tumors on a SMOTE-generated dataset. ML techniques based on DKI-derived metrics are useful for the discrimination of pediatric PF tumors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39061217</pmid><doi>10.3390/cancers16142578</doi><orcidid>https://orcid.org/0000-0001-6147-9623</orcidid><orcidid>https://orcid.org/0000-0002-0264-8519</orcidid><orcidid>https://orcid.org/0000-0002-4747-1032</orcidid><orcidid>https://orcid.org/0000-0002-0158-4760</orcidid><orcidid>https://orcid.org/0000-0002-7952-6771</orcidid><orcidid>https://orcid.org/0000-0002-4507-2740</orcidid><orcidid>https://orcid.org/0000-0002-5203-7855</orcidid><orcidid>https://orcid.org/0000-0003-3540-4331</orcidid><orcidid>https://orcid.org/0000-0002-1142-4904</orcidid><orcidid>https://orcid.org/0000-0001-5028-5102</orcidid><orcidid>https://orcid.org/0000-0003-4901-9952</orcidid><orcidid>https://orcid.org/0000-0002-4408-2373</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2024-07, Vol.16 (14), p.2578
issn 2072-6694
2072-6694
language eng
recordid cdi_proquest_miscellaneous_3085115214
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Astrocytoma
Automation
Brain cancer
Brain tumors
Classification
Diffusion
Gliomas
Kurtosis
Learning algorithms
Machine learning
Medical care
Medical imaging equipment
Medulloblastoma
Observational learning
Patients
Pediatrics
Probability distribution
Quality management
Solid tumors
Statistical analysis
Tissues
Tumors
title Machine Learning Analysis in Diffusion Kurtosis Imaging for Discriminating Pediatric Posterior Fossa Tumors: A Repeatability and Accuracy Pilot Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Analysis%20in%20Diffusion%20Kurtosis%20Imaging%20for%20Discriminating%20Pediatric%20Posterior%20Fossa%20Tumors:%20A%20Repeatability%20and%20Accuracy%20Pilot%20Study&rft.jtitle=Cancers&rft.au=Voicu,%20Ioan%20Paul&rft.date=2024-07-18&rft.volume=16&rft.issue=14&rft.spage=2578&rft.pages=2578-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers16142578&rft_dat=%3Cgale_proqu%3EA803764015%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-84ed8dc5030db0a5a04d1ed2d6c7fd3ed8397aeb14378df070e9321fd9c95b313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084727832&rft_id=info:pmid/39061217&rft_galeid=A803764015&rfr_iscdi=true