Loading…

Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis

Main conclusion The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2024-09, Vol.260 (3), p.61-61, Article 61
Main Authors: Li, Yuyan, Wu, Qianwen, Zhu, Lingyi, Zhang, Ruili, Tong, Boqiang, Wang, Yan, Han, Yi, Lu, Yizeng, Dou, Dequan, Tian, Zhihui, Zheng, Jian, Zhang, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-28ae59b52623d5fe04f0238bcde34e2e58a82a1d69acbef5e74da27e285a18523
container_end_page 61
container_issue 3
container_start_page 61
container_title Planta
container_volume 260
creator Li, Yuyan
Wu, Qianwen
Zhu, Lingyi
Zhang, Ruili
Tong, Boqiang
Wang, Yan
Han, Yi
Lu, Yizeng
Dou, Dequan
Tian, Zhihui
Zheng, Jian
Zhang, Yan
description Main conclusion The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree’s high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis , and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana . The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri . In S. pohuashanensis , SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana , indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.
doi_str_mv 10.1007/s00425-024-04486-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085116116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153703523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-28ae59b52623d5fe04f0238bcde34e2e58a82a1d69acbef5e74da27e285a18523</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxS0EKgvtF-CALHHhkjL-lzhHhKCLhMQBuGI5yYQN7MbBkxzg09fdpSBxAMmSrZnfe2P7MXYg4LcAKE4IQEuTgdQZaG3z7HWLzYRWMpOg7TabAaQzlMrssj2iR4DULIofbFeVkIMGmLH7Ofoxo0Won_gYfU917IaxCz1vfT2GyOfUnlrPIz5MSz8i8UUScBojEqUqDaEn5F3Pb0KsJuJDWEyeFr7Hnjr6yXZavyT89bbvs7uL89uzeXZ1_efy7PQqq6Utx0xaj6asjMylakyLoFuQylZ1g0qjRGO9lV40eenrCluDhW68LFBa44U1Uu2z443vEMPzhDS6VUc1LpfpHmEip4RRBahEfo-CNULkaSX06BP6GKbYp4esqfS9Zj1bbqg6BqKIrRtit_LxxQlw_4Jym6BcCsqtg3KvSXT4Zj1VK2zeJf-TSYDaAJRa_QPGj9lf2P4F9JGetg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085003552</pqid></control><display><type>article</type><title>Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis</title><source>Springer Nature</source><creator>Li, Yuyan ; Wu, Qianwen ; Zhu, Lingyi ; Zhang, Ruili ; Tong, Boqiang ; Wang, Yan ; Han, Yi ; Lu, Yizeng ; Dou, Dequan ; Tian, Zhihui ; Zheng, Jian ; Zhang, Yan</creator><creatorcontrib>Li, Yuyan ; Wu, Qianwen ; Zhu, Lingyi ; Zhang, Ruili ; Tong, Boqiang ; Wang, Yan ; Han, Yi ; Lu, Yizeng ; Dou, Dequan ; Tian, Zhihui ; Zheng, Jian ; Zhang, Yan</creatorcontrib><description>Main conclusion The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree’s high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis , and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana . The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri . In S. pohuashanensis , SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana , indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.</description><identifier>ISSN: 0032-0935</identifier><identifier>ISSN: 1432-2048</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-024-04486-z</identifier><identifier>PMID: 39060400</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Amino acids ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis thaliana ; Biomedical and Life Sciences ; Catalase ; Courtyards ; DNA-binding domains ; Ecology ; Forestry ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Heat ; Heat resistance ; heat shock response ; Heat Shock Transcription Factors - genetics ; Heat Shock Transcription Factors - metabolism ; Heat stress ; Heat tolerance ; Heat-Shock Response - genetics ; heterologous gene expression ; High temperature ; Hot Temperature ; hydrophilicity ; isoelectric point ; Leaves ; Life Sciences ; Malus domestica ; Molecular structure ; Molecular weight ; Original Article ; Ornamental plants ; Ornamental trees ; ornamental value ; Peroxidase ; Phosphorylation ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Leaves - physiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; plant response ; Plant Sciences ; Plants, Genetically Modified ; proline ; Pyrus bretschneideri ; Regulatory mechanisms (biology) ; signal peptide ; Sorbus - genetics ; Sorbus - metabolism ; Sorbus - physiology ; Sorbus aucuparia subsp. pohuashanensis ; Sorbus pohuashanensis ; Structure-function relationships ; summer ; Sunburn ; Temperature ; Temperature effects ; Temperature tolerance ; Thermotolerance - genetics ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Planta, 2024-09, Vol.260 (3), p.61-61, Article 61</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-28ae59b52623d5fe04f0238bcde34e2e58a82a1d69acbef5e74da27e285a18523</cites><orcidid>0000-0003-3221-4591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39060400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuyan</creatorcontrib><creatorcontrib>Wu, Qianwen</creatorcontrib><creatorcontrib>Zhu, Lingyi</creatorcontrib><creatorcontrib>Zhang, Ruili</creatorcontrib><creatorcontrib>Tong, Boqiang</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Lu, Yizeng</creatorcontrib><creatorcontrib>Dou, Dequan</creatorcontrib><creatorcontrib>Tian, Zhihui</creatorcontrib><creatorcontrib>Zheng, Jian</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><title>Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Main conclusion The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree’s high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis , and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana . The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri . In S. pohuashanensis , SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana , indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.</description><subject>Agriculture</subject><subject>Amino acids</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Biomedical and Life Sciences</subject><subject>Catalase</subject><subject>Courtyards</subject><subject>DNA-binding domains</subject><subject>Ecology</subject><subject>Forestry</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Heat</subject><subject>Heat resistance</subject><subject>heat shock response</subject><subject>Heat Shock Transcription Factors - genetics</subject><subject>Heat Shock Transcription Factors - metabolism</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response - genetics</subject><subject>heterologous gene expression</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>hydrophilicity</subject><subject>isoelectric point</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Malus domestica</subject><subject>Molecular structure</subject><subject>Molecular weight</subject><subject>Original Article</subject><subject>Ornamental plants</subject><subject>Ornamental trees</subject><subject>ornamental value</subject><subject>Peroxidase</subject><subject>Phosphorylation</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>plant response</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><subject>proline</subject><subject>Pyrus bretschneideri</subject><subject>Regulatory mechanisms (biology)</subject><subject>signal peptide</subject><subject>Sorbus - genetics</subject><subject>Sorbus - metabolism</subject><subject>Sorbus - physiology</subject><subject>Sorbus aucuparia subsp. pohuashanensis</subject><subject>Sorbus pohuashanensis</subject><subject>Structure-function relationships</subject><subject>summer</subject><subject>Sunburn</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature tolerance</subject><subject>Thermotolerance - genetics</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0032-0935</issn><issn>1432-2048</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU9P3DAQxS0EKgvtF-CALHHhkjL-lzhHhKCLhMQBuGI5yYQN7MbBkxzg09fdpSBxAMmSrZnfe2P7MXYg4LcAKE4IQEuTgdQZaG3z7HWLzYRWMpOg7TabAaQzlMrssj2iR4DULIofbFeVkIMGmLH7Ofoxo0Won_gYfU917IaxCz1vfT2GyOfUnlrPIz5MSz8i8UUScBojEqUqDaEn5F3Pb0KsJuJDWEyeFr7Hnjr6yXZavyT89bbvs7uL89uzeXZ1_efy7PQqq6Utx0xaj6asjMylakyLoFuQylZ1g0qjRGO9lV40eenrCluDhW68LFBa44U1Uu2z443vEMPzhDS6VUc1LpfpHmEip4RRBahEfo-CNULkaSX06BP6GKbYp4esqfS9Zj1bbqg6BqKIrRtit_LxxQlw_4Jym6BcCsqtg3KvSXT4Zj1VK2zeJf-TSYDaAJRa_QPGj9lf2P4F9JGetg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Li, Yuyan</creator><creator>Wu, Qianwen</creator><creator>Zhu, Lingyi</creator><creator>Zhang, Ruili</creator><creator>Tong, Boqiang</creator><creator>Wang, Yan</creator><creator>Han, Yi</creator><creator>Lu, Yizeng</creator><creator>Dou, Dequan</creator><creator>Tian, Zhihui</creator><creator>Zheng, Jian</creator><creator>Zhang, Yan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3221-4591</orcidid></search><sort><creationdate>20240901</creationdate><title>Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis</title><author>Li, Yuyan ; Wu, Qianwen ; Zhu, Lingyi ; Zhang, Ruili ; Tong, Boqiang ; Wang, Yan ; Han, Yi ; Lu, Yizeng ; Dou, Dequan ; Tian, Zhihui ; Zheng, Jian ; Zhang, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-28ae59b52623d5fe04f0238bcde34e2e58a82a1d69acbef5e74da27e285a18523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Amino acids</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Biomedical and Life Sciences</topic><topic>Catalase</topic><topic>Courtyards</topic><topic>DNA-binding domains</topic><topic>Ecology</topic><topic>Forestry</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Heat</topic><topic>Heat resistance</topic><topic>heat shock response</topic><topic>Heat Shock Transcription Factors - genetics</topic><topic>Heat Shock Transcription Factors - metabolism</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response - genetics</topic><topic>heterologous gene expression</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>hydrophilicity</topic><topic>isoelectric point</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Malus domestica</topic><topic>Molecular structure</topic><topic>Molecular weight</topic><topic>Original Article</topic><topic>Ornamental plants</topic><topic>Ornamental trees</topic><topic>ornamental value</topic><topic>Peroxidase</topic><topic>Phosphorylation</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>plant response</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><topic>proline</topic><topic>Pyrus bretschneideri</topic><topic>Regulatory mechanisms (biology)</topic><topic>signal peptide</topic><topic>Sorbus - genetics</topic><topic>Sorbus - metabolism</topic><topic>Sorbus - physiology</topic><topic>Sorbus aucuparia subsp. pohuashanensis</topic><topic>Sorbus pohuashanensis</topic><topic>Structure-function relationships</topic><topic>summer</topic><topic>Sunburn</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature tolerance</topic><topic>Thermotolerance - genetics</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuyan</creatorcontrib><creatorcontrib>Wu, Qianwen</creatorcontrib><creatorcontrib>Zhu, Lingyi</creatorcontrib><creatorcontrib>Zhang, Ruili</creatorcontrib><creatorcontrib>Tong, Boqiang</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Lu, Yizeng</creatorcontrib><creatorcontrib>Dou, Dequan</creatorcontrib><creatorcontrib>Tian, Zhihui</creatorcontrib><creatorcontrib>Zheng, Jian</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuyan</au><au>Wu, Qianwen</au><au>Zhu, Lingyi</au><au>Zhang, Ruili</au><au>Tong, Boqiang</au><au>Wang, Yan</au><au>Han, Yi</au><au>Lu, Yizeng</au><au>Dou, Dequan</au><au>Tian, Zhihui</au><au>Zheng, Jian</au><au>Zhang, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>260</volume><issue>3</issue><spage>61</spage><epage>61</epage><pages>61-61</pages><artnum>61</artnum><issn>0032-0935</issn><issn>1432-2048</issn><eissn>1432-2048</eissn><abstract>Main conclusion The SpHsfA8a upregulated expression can induce the expression of multiple heat-tolerance genes, and increase the tolerance of Arabidopsis thaliana to high-temperature stress. Sorbus pohuashanensis is an ornamental tree used in courtyards. However, given its poor thermotolerance, the leaves experience sunburn owing to high temperatures in summer, severely affecting its ornamental value. Heat-shock transcription factors play a critical regulatory role in the plant response to heat stress. To explore the heat-tolerance-related genes of S. pohuashanensis to increase the tree’s high-temperature tolerance, the SpHsfA8a gene was cloned from S. pohuashanensis , and its structure and expression patterns in different tissues and under abiotic stress were analyzed, as well as its function in heat tolerance, was determined via overexpression in Arabidopsis thaliana . The results showed that SpHsfA8a encodes 416 amino acids with a predicted molecular weight of 47.18 kDa and an isoelectric point of 4.63. SpHsfA8a is a hydrophilic protein without a signal peptide and multiple phosphorylation sites. It also contains a typical DNA-binding domain and is similar to MdHsfA8a in Malus domestica and PbHsfA8 in Pyrus bretschneideri . In S. pohuashanensis , SpHsfA8a is highly expressed in the roots and fruits and is strongly induced under high-temperature stress in leaves. The heterologous expression of SpHsfA8a in A. thaliana resulted in a considerably stronger growth status than that of the wild type after 6 h of treatment at 45 °C. Its proline content, catalase and peroxidase activities also significantly increased, indicating that the SpHsfA8a gene increased the tolerance of A. thaliana to high-temperature stress. SpHsfA8a could induce the expression of multiple heat-tolerance genes in A. thaliana , indicating that SpHsfA8a could strengthen the tolerance of A. thaliana to high-temperature stress through a complex regulatory network. The results of this study lay the foundation for further elucidation of the regulatory mechanism of SpHsfA8a in response of S. pohuashanensis to high-temperature stress.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39060400</pmid><doi>10.1007/s00425-024-04486-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3221-4591</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2024-09, Vol.260 (3), p.61-61, Article 61
issn 0032-0935
1432-2048
1432-2048
language eng
recordid cdi_proquest_miscellaneous_3085116116
source Springer Nature
subjects Agriculture
Amino acids
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis thaliana
Biomedical and Life Sciences
Catalase
Courtyards
DNA-binding domains
Ecology
Forestry
Gene expression
Gene Expression Regulation, Plant
Genes
Heat
Heat resistance
heat shock response
Heat Shock Transcription Factors - genetics
Heat Shock Transcription Factors - metabolism
Heat stress
Heat tolerance
Heat-Shock Response - genetics
heterologous gene expression
High temperature
Hot Temperature
hydrophilicity
isoelectric point
Leaves
Life Sciences
Malus domestica
Molecular structure
Molecular weight
Original Article
Ornamental plants
Ornamental trees
ornamental value
Peroxidase
Phosphorylation
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Leaves - physiology
Plant Proteins - genetics
Plant Proteins - metabolism
plant response
Plant Sciences
Plants, Genetically Modified
proline
Pyrus bretschneideri
Regulatory mechanisms (biology)
signal peptide
Sorbus - genetics
Sorbus - metabolism
Sorbus - physiology
Sorbus aucuparia subsp. pohuashanensis
Sorbus pohuashanensis
Structure-function relationships
summer
Sunburn
Temperature
Temperature effects
Temperature tolerance
Thermotolerance - genetics
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
title Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-shock%20transcription%20factor%20HsfA8a%20regulates%20heat%20stress%20response%20in%20Sorbus%20pohuashanensis&rft.jtitle=Planta&rft.au=Li,%20Yuyan&rft.date=2024-09-01&rft.volume=260&rft.issue=3&rft.spage=61&rft.epage=61&rft.pages=61-61&rft.artnum=61&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-024-04486-z&rft_dat=%3Cproquest_cross%3E3153703523%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-28ae59b52623d5fe04f0238bcde34e2e58a82a1d69acbef5e74da27e285a18523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085003552&rft_id=info:pmid/39060400&rfr_iscdi=true