Loading…
Generating multi-pathological and multi-modal images and labels for brain MRI
The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provid...
Saved in:
Published in: | Medical image analysis 2024-10, Vol.97, p.103278, Article 103278 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783 |
container_end_page | |
container_issue | |
container_start_page | 103278 |
container_title | Medical image analysis |
container_volume | 97 |
creator | Fernandez, Virginia Pinaya, Walter Hugo Lopez Borges, Pedro Graham, Mark S. Tudosiu, Petru-Daniel Vercauteren, Tom Cardoso, M. Jorge |
description | The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provide synthetic datasets that come, at most, with categorical annotations. The generation of paired images and segmentation samples that can be used in downstream, supervised segmentation tasks remains fairly uncharted territory. This work proposes a two-stage generative model capable of producing 2D and 3D semantic label maps and corresponding multi-modal images. We use a latent diffusion model for label synthesis and a VAE-GAN for semantic image synthesis. Synthetic datasets provided by this model are shown to work in a wide variety of segmentation tasks, supporting small, real datasets or fully replacing them while maintaining good performance. We also demonstrate its ability to improve downstream performance on out-of-distribution data.
•2D and 3D paired labels and multi-modal images are synthesised end-to-end.•Conditioning enables synthesis of lesions and extrapolation to unseen combinations.•Synthetic datasets can be used to supplement small real datasets for segmentation.•Synthetic datasets improve generalisability to other domains and unseen lesions.•Privacy analysis shows no memorisation of training datasets. |
doi_str_mv | 10.1016/j.media.2024.103278 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085116572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841524002032</els_id><sourcerecordid>3085116572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYmPwC5BQj1w68tE2yYEDmmBM2oSE4BylqTsytc1IOiT-Pdk6OHKy_fq1LT8IXRM8JZgUd5tpC5XVU4ppFhVGuThBY8IKkoqMstO_nOQjdBHCBmPMswyfoxGTOJc0w2O0mkMHXve2WyftrultutX9h2vc2hrdJLqrjnLrqljbVq8hHORGl9CEpHY-Kb22XbJ6XVyis1o3Aa6OcYLenx7fZs_p8mW-mD0sU0OZ7FPAmkpNqtIYQzURJdS4lLVggoGMVclpJTQvZK4ZL_OKAc_jG1QU0mQ1F2yCboe9W-8-dxB61dpgoGl0B24XFMMiJ6TIOY1WNliNdyF4qNXWxy_8tyJY7TmqjTpwVHuOauAYp26OB3Zl7P7N_IKLhvvBEBnAlwWvgrHQmbjJg-lV5ey_B34AUHCEQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085116572</pqid></control><display><type>article</type><title>Generating multi-pathological and multi-modal images and labels for brain MRI</title><source>ScienceDirect Journals</source><creator>Fernandez, Virginia ; Pinaya, Walter Hugo Lopez ; Borges, Pedro ; Graham, Mark S. ; Tudosiu, Petru-Daniel ; Vercauteren, Tom ; Cardoso, M. Jorge</creator><creatorcontrib>Fernandez, Virginia ; Pinaya, Walter Hugo Lopez ; Borges, Pedro ; Graham, Mark S. ; Tudosiu, Petru-Daniel ; Vercauteren, Tom ; Cardoso, M. Jorge</creatorcontrib><description>The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provide synthetic datasets that come, at most, with categorical annotations. The generation of paired images and segmentation samples that can be used in downstream, supervised segmentation tasks remains fairly uncharted territory. This work proposes a two-stage generative model capable of producing 2D and 3D semantic label maps and corresponding multi-modal images. We use a latent diffusion model for label synthesis and a VAE-GAN for semantic image synthesis. Synthetic datasets provided by this model are shown to work in a wide variety of segmentation tasks, supporting small, real datasets or fully replacing them while maintaining good performance. We also demonstrate its ability to improve downstream performance on out-of-distribution data.
•2D and 3D paired labels and multi-modal images are synthesised end-to-end.•Conditioning enables synthesis of lesions and extrapolation to unseen combinations.•Synthetic datasets can be used to supplement small real datasets for segmentation.•Synthetic datasets improve generalisability to other domains and unseen lesions.•Privacy analysis shows no memorisation of training datasets.</description><identifier>ISSN: 1361-8415</identifier><identifier>ISSN: 1361-8423</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2024.103278</identifier><identifier>PMID: 39059240</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Brain MRI ; Deep Learning ; Generative modelling ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Magnetic Resonance Imaging - methods ; Medical imaging segmentation ; Multimodal Imaging - methods</subject><ispartof>Medical image analysis, 2024-10, Vol.97, p.103278, Article 103278</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783</cites><orcidid>0000-0001-5984-197X ; 0000-0003-1794-0456 ; 0000-0003-3739-1087 ; 0000-0002-4170-1095 ; 0000-0001-6435-5079 ; 0000-0003-1284-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39059240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez, Virginia</creatorcontrib><creatorcontrib>Pinaya, Walter Hugo Lopez</creatorcontrib><creatorcontrib>Borges, Pedro</creatorcontrib><creatorcontrib>Graham, Mark S.</creatorcontrib><creatorcontrib>Tudosiu, Petru-Daniel</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Cardoso, M. Jorge</creatorcontrib><title>Generating multi-pathological and multi-modal images and labels for brain MRI</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provide synthetic datasets that come, at most, with categorical annotations. The generation of paired images and segmentation samples that can be used in downstream, supervised segmentation tasks remains fairly uncharted territory. This work proposes a two-stage generative model capable of producing 2D and 3D semantic label maps and corresponding multi-modal images. We use a latent diffusion model for label synthesis and a VAE-GAN for semantic image synthesis. Synthetic datasets provided by this model are shown to work in a wide variety of segmentation tasks, supporting small, real datasets or fully replacing them while maintaining good performance. We also demonstrate its ability to improve downstream performance on out-of-distribution data.
•2D and 3D paired labels and multi-modal images are synthesised end-to-end.•Conditioning enables synthesis of lesions and extrapolation to unseen combinations.•Synthetic datasets can be used to supplement small real datasets for segmentation.•Synthetic datasets improve generalisability to other domains and unseen lesions.•Privacy analysis shows no memorisation of training datasets.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Brain MRI</subject><subject>Deep Learning</subject><subject>Generative modelling</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging segmentation</subject><subject>Multimodal Imaging - methods</subject><issn>1361-8415</issn><issn>1361-8423</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEYmPwC5BQj1w68tE2yYEDmmBM2oSE4BylqTsytc1IOiT-Pdk6OHKy_fq1LT8IXRM8JZgUd5tpC5XVU4ppFhVGuThBY8IKkoqMstO_nOQjdBHCBmPMswyfoxGTOJc0w2O0mkMHXve2WyftrultutX9h2vc2hrdJLqrjnLrqljbVq8hHORGl9CEpHY-Kb22XbJ6XVyis1o3Aa6OcYLenx7fZs_p8mW-mD0sU0OZ7FPAmkpNqtIYQzURJdS4lLVggoGMVclpJTQvZK4ZL_OKAc_jG1QU0mQ1F2yCboe9W-8-dxB61dpgoGl0B24XFMMiJ6TIOY1WNliNdyF4qNXWxy_8tyJY7TmqjTpwVHuOauAYp26OB3Zl7P7N_IKLhvvBEBnAlwWvgrHQmbjJg-lV5ey_B34AUHCEQQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Fernandez, Virginia</creator><creator>Pinaya, Walter Hugo Lopez</creator><creator>Borges, Pedro</creator><creator>Graham, Mark S.</creator><creator>Tudosiu, Petru-Daniel</creator><creator>Vercauteren, Tom</creator><creator>Cardoso, M. Jorge</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5984-197X</orcidid><orcidid>https://orcid.org/0000-0003-1794-0456</orcidid><orcidid>https://orcid.org/0000-0003-3739-1087</orcidid><orcidid>https://orcid.org/0000-0002-4170-1095</orcidid><orcidid>https://orcid.org/0000-0001-6435-5079</orcidid><orcidid>https://orcid.org/0000-0003-1284-2558</orcidid></search><sort><creationdate>202410</creationdate><title>Generating multi-pathological and multi-modal images and labels for brain MRI</title><author>Fernandez, Virginia ; Pinaya, Walter Hugo Lopez ; Borges, Pedro ; Graham, Mark S. ; Tudosiu, Petru-Daniel ; Vercauteren, Tom ; Cardoso, M. Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Brain MRI</topic><topic>Deep Learning</topic><topic>Generative modelling</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging segmentation</topic><topic>Multimodal Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Virginia</creatorcontrib><creatorcontrib>Pinaya, Walter Hugo Lopez</creatorcontrib><creatorcontrib>Borges, Pedro</creatorcontrib><creatorcontrib>Graham, Mark S.</creatorcontrib><creatorcontrib>Tudosiu, Petru-Daniel</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Cardoso, M. Jorge</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Virginia</au><au>Pinaya, Walter Hugo Lopez</au><au>Borges, Pedro</au><au>Graham, Mark S.</au><au>Tudosiu, Petru-Daniel</au><au>Vercauteren, Tom</au><au>Cardoso, M. Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating multi-pathological and multi-modal images and labels for brain MRI</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2024-10</date><risdate>2024</risdate><volume>97</volume><spage>103278</spage><pages>103278-</pages><artnum>103278</artnum><issn>1361-8415</issn><issn>1361-8423</issn><eissn>1361-8423</eissn><abstract>The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provide synthetic datasets that come, at most, with categorical annotations. The generation of paired images and segmentation samples that can be used in downstream, supervised segmentation tasks remains fairly uncharted territory. This work proposes a two-stage generative model capable of producing 2D and 3D semantic label maps and corresponding multi-modal images. We use a latent diffusion model for label synthesis and a VAE-GAN for semantic image synthesis. Synthetic datasets provided by this model are shown to work in a wide variety of segmentation tasks, supporting small, real datasets or fully replacing them while maintaining good performance. We also demonstrate its ability to improve downstream performance on out-of-distribution data.
•2D and 3D paired labels and multi-modal images are synthesised end-to-end.•Conditioning enables synthesis of lesions and extrapolation to unseen combinations.•Synthetic datasets can be used to supplement small real datasets for segmentation.•Synthetic datasets improve generalisability to other domains and unseen lesions.•Privacy analysis shows no memorisation of training datasets.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39059240</pmid><doi>10.1016/j.media.2024.103278</doi><orcidid>https://orcid.org/0000-0001-5984-197X</orcidid><orcidid>https://orcid.org/0000-0003-1794-0456</orcidid><orcidid>https://orcid.org/0000-0003-3739-1087</orcidid><orcidid>https://orcid.org/0000-0002-4170-1095</orcidid><orcidid>https://orcid.org/0000-0001-6435-5079</orcidid><orcidid>https://orcid.org/0000-0003-1284-2558</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2024-10, Vol.97, p.103278, Article 103278 |
issn | 1361-8415 1361-8423 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_3085116572 |
source | ScienceDirect Journals |
subjects | Algorithms Brain - diagnostic imaging Brain MRI Deep Learning Generative modelling Humans Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Magnetic Resonance Imaging - methods Medical imaging segmentation Multimodal Imaging - methods |
title | Generating multi-pathological and multi-modal images and labels for brain MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20multi-pathological%20and%20multi-modal%20images%20and%20labels%20for%20brain%20MRI&rft.jtitle=Medical%20image%20analysis&rft.au=Fernandez,%20Virginia&rft.date=2024-10&rft.volume=97&rft.spage=103278&rft.pages=103278-&rft.artnum=103278&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2024.103278&rft_dat=%3Cproquest_cross%3E3085116572%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085116572&rft_id=info:pmid/39059240&rfr_iscdi=true |