Loading…

Generating multi-pathological and multi-modal images and labels for brain MRI

The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provid...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis 2024-10, Vol.97, p.103278, Article 103278
Main Authors: Fernandez, Virginia, Pinaya, Walter Hugo Lopez, Borges, Pedro, Graham, Mark S., Tudosiu, Petru-Daniel, Vercauteren, Tom, Cardoso, M. Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783
container_end_page
container_issue
container_start_page 103278
container_title Medical image analysis
container_volume 97
creator Fernandez, Virginia
Pinaya, Walter Hugo Lopez
Borges, Pedro
Graham, Mark S.
Tudosiu, Petru-Daniel
Vercauteren, Tom
Cardoso, M. Jorge
description The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provide synthetic datasets that come, at most, with categorical annotations. The generation of paired images and segmentation samples that can be used in downstream, supervised segmentation tasks remains fairly uncharted territory. This work proposes a two-stage generative model capable of producing 2D and 3D semantic label maps and corresponding multi-modal images. We use a latent diffusion model for label synthesis and a VAE-GAN for semantic image synthesis. Synthetic datasets provided by this model are shown to work in a wide variety of segmentation tasks, supporting small, real datasets or fully replacing them while maintaining good performance. We also demonstrate its ability to improve downstream performance on out-of-distribution data. •2D and 3D paired labels and multi-modal images are synthesised end-to-end.•Conditioning enables synthesis of lesions and extrapolation to unseen combinations.•Synthetic datasets can be used to supplement small real datasets for segmentation.•Synthetic datasets improve generalisability to other domains and unseen lesions.•Privacy analysis shows no memorisation of training datasets.
doi_str_mv 10.1016/j.media.2024.103278
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085116572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841524002032</els_id><sourcerecordid>3085116572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYmPwC5BQj1w68tE2yYEDmmBM2oSE4BylqTsytc1IOiT-Pdk6OHKy_fq1LT8IXRM8JZgUd5tpC5XVU4ppFhVGuThBY8IKkoqMstO_nOQjdBHCBmPMswyfoxGTOJc0w2O0mkMHXve2WyftrultutX9h2vc2hrdJLqrjnLrqljbVq8hHORGl9CEpHY-Kb22XbJ6XVyis1o3Aa6OcYLenx7fZs_p8mW-mD0sU0OZ7FPAmkpNqtIYQzURJdS4lLVggoGMVclpJTQvZK4ZL_OKAc_jG1QU0mQ1F2yCboe9W-8-dxB61dpgoGl0B24XFMMiJ6TIOY1WNliNdyF4qNXWxy_8tyJY7TmqjTpwVHuOauAYp26OB3Zl7P7N_IKLhvvBEBnAlwWvgrHQmbjJg-lV5ey_B34AUHCEQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085116572</pqid></control><display><type>article</type><title>Generating multi-pathological and multi-modal images and labels for brain MRI</title><source>ScienceDirect Journals</source><creator>Fernandez, Virginia ; Pinaya, Walter Hugo Lopez ; Borges, Pedro ; Graham, Mark S. ; Tudosiu, Petru-Daniel ; Vercauteren, Tom ; Cardoso, M. Jorge</creator><creatorcontrib>Fernandez, Virginia ; Pinaya, Walter Hugo Lopez ; Borges, Pedro ; Graham, Mark S. ; Tudosiu, Petru-Daniel ; Vercauteren, Tom ; Cardoso, M. Jorge</creatorcontrib><description>The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provide synthetic datasets that come, at most, with categorical annotations. The generation of paired images and segmentation samples that can be used in downstream, supervised segmentation tasks remains fairly uncharted territory. This work proposes a two-stage generative model capable of producing 2D and 3D semantic label maps and corresponding multi-modal images. We use a latent diffusion model for label synthesis and a VAE-GAN for semantic image synthesis. Synthetic datasets provided by this model are shown to work in a wide variety of segmentation tasks, supporting small, real datasets or fully replacing them while maintaining good performance. We also demonstrate its ability to improve downstream performance on out-of-distribution data. •2D and 3D paired labels and multi-modal images are synthesised end-to-end.•Conditioning enables synthesis of lesions and extrapolation to unseen combinations.•Synthetic datasets can be used to supplement small real datasets for segmentation.•Synthetic datasets improve generalisability to other domains and unseen lesions.•Privacy analysis shows no memorisation of training datasets.</description><identifier>ISSN: 1361-8415</identifier><identifier>ISSN: 1361-8423</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2024.103278</identifier><identifier>PMID: 39059240</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Brain MRI ; Deep Learning ; Generative modelling ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Magnetic Resonance Imaging - methods ; Medical imaging segmentation ; Multimodal Imaging - methods</subject><ispartof>Medical image analysis, 2024-10, Vol.97, p.103278, Article 103278</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783</cites><orcidid>0000-0001-5984-197X ; 0000-0003-1794-0456 ; 0000-0003-3739-1087 ; 0000-0002-4170-1095 ; 0000-0001-6435-5079 ; 0000-0003-1284-2558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39059240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez, Virginia</creatorcontrib><creatorcontrib>Pinaya, Walter Hugo Lopez</creatorcontrib><creatorcontrib>Borges, Pedro</creatorcontrib><creatorcontrib>Graham, Mark S.</creatorcontrib><creatorcontrib>Tudosiu, Petru-Daniel</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Cardoso, M. Jorge</creatorcontrib><title>Generating multi-pathological and multi-modal images and labels for brain MRI</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provide synthetic datasets that come, at most, with categorical annotations. The generation of paired images and segmentation samples that can be used in downstream, supervised segmentation tasks remains fairly uncharted territory. This work proposes a two-stage generative model capable of producing 2D and 3D semantic label maps and corresponding multi-modal images. We use a latent diffusion model for label synthesis and a VAE-GAN for semantic image synthesis. Synthetic datasets provided by this model are shown to work in a wide variety of segmentation tasks, supporting small, real datasets or fully replacing them while maintaining good performance. We also demonstrate its ability to improve downstream performance on out-of-distribution data. •2D and 3D paired labels and multi-modal images are synthesised end-to-end.•Conditioning enables synthesis of lesions and extrapolation to unseen combinations.•Synthetic datasets can be used to supplement small real datasets for segmentation.•Synthetic datasets improve generalisability to other domains and unseen lesions.•Privacy analysis shows no memorisation of training datasets.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Brain MRI</subject><subject>Deep Learning</subject><subject>Generative modelling</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging segmentation</subject><subject>Multimodal Imaging - methods</subject><issn>1361-8415</issn><issn>1361-8423</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEYmPwC5BQj1w68tE2yYEDmmBM2oSE4BylqTsytc1IOiT-Pdk6OHKy_fq1LT8IXRM8JZgUd5tpC5XVU4ppFhVGuThBY8IKkoqMstO_nOQjdBHCBmPMswyfoxGTOJc0w2O0mkMHXve2WyftrultutX9h2vc2hrdJLqrjnLrqljbVq8hHORGl9CEpHY-Kb22XbJ6XVyis1o3Aa6OcYLenx7fZs_p8mW-mD0sU0OZ7FPAmkpNqtIYQzURJdS4lLVggoGMVclpJTQvZK4ZL_OKAc_jG1QU0mQ1F2yCboe9W-8-dxB61dpgoGl0B24XFMMiJ6TIOY1WNliNdyF4qNXWxy_8tyJY7TmqjTpwVHuOauAYp26OB3Zl7P7N_IKLhvvBEBnAlwWvgrHQmbjJg-lV5ey_B34AUHCEQQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Fernandez, Virginia</creator><creator>Pinaya, Walter Hugo Lopez</creator><creator>Borges, Pedro</creator><creator>Graham, Mark S.</creator><creator>Tudosiu, Petru-Daniel</creator><creator>Vercauteren, Tom</creator><creator>Cardoso, M. Jorge</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5984-197X</orcidid><orcidid>https://orcid.org/0000-0003-1794-0456</orcidid><orcidid>https://orcid.org/0000-0003-3739-1087</orcidid><orcidid>https://orcid.org/0000-0002-4170-1095</orcidid><orcidid>https://orcid.org/0000-0001-6435-5079</orcidid><orcidid>https://orcid.org/0000-0003-1284-2558</orcidid></search><sort><creationdate>202410</creationdate><title>Generating multi-pathological and multi-modal images and labels for brain MRI</title><author>Fernandez, Virginia ; Pinaya, Walter Hugo Lopez ; Borges, Pedro ; Graham, Mark S. ; Tudosiu, Petru-Daniel ; Vercauteren, Tom ; Cardoso, M. Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Brain MRI</topic><topic>Deep Learning</topic><topic>Generative modelling</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging segmentation</topic><topic>Multimodal Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Virginia</creatorcontrib><creatorcontrib>Pinaya, Walter Hugo Lopez</creatorcontrib><creatorcontrib>Borges, Pedro</creatorcontrib><creatorcontrib>Graham, Mark S.</creatorcontrib><creatorcontrib>Tudosiu, Petru-Daniel</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Cardoso, M. Jorge</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Virginia</au><au>Pinaya, Walter Hugo Lopez</au><au>Borges, Pedro</au><au>Graham, Mark S.</au><au>Tudosiu, Petru-Daniel</au><au>Vercauteren, Tom</au><au>Cardoso, M. Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating multi-pathological and multi-modal images and labels for brain MRI</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2024-10</date><risdate>2024</risdate><volume>97</volume><spage>103278</spage><pages>103278-</pages><artnum>103278</artnum><issn>1361-8415</issn><issn>1361-8423</issn><eissn>1361-8423</eissn><abstract>The last few years have seen a boom in using generative models to augment real datasets, as synthetic data can effectively model real data distributions and provide privacy-preserving, shareable datasets that can be used to train deep learning models. However, most of these methods are 2D and provide synthetic datasets that come, at most, with categorical annotations. The generation of paired images and segmentation samples that can be used in downstream, supervised segmentation tasks remains fairly uncharted territory. This work proposes a two-stage generative model capable of producing 2D and 3D semantic label maps and corresponding multi-modal images. We use a latent diffusion model for label synthesis and a VAE-GAN for semantic image synthesis. Synthetic datasets provided by this model are shown to work in a wide variety of segmentation tasks, supporting small, real datasets or fully replacing them while maintaining good performance. We also demonstrate its ability to improve downstream performance on out-of-distribution data. •2D and 3D paired labels and multi-modal images are synthesised end-to-end.•Conditioning enables synthesis of lesions and extrapolation to unseen combinations.•Synthetic datasets can be used to supplement small real datasets for segmentation.•Synthetic datasets improve generalisability to other domains and unseen lesions.•Privacy analysis shows no memorisation of training datasets.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39059240</pmid><doi>10.1016/j.media.2024.103278</doi><orcidid>https://orcid.org/0000-0001-5984-197X</orcidid><orcidid>https://orcid.org/0000-0003-1794-0456</orcidid><orcidid>https://orcid.org/0000-0003-3739-1087</orcidid><orcidid>https://orcid.org/0000-0002-4170-1095</orcidid><orcidid>https://orcid.org/0000-0001-6435-5079</orcidid><orcidid>https://orcid.org/0000-0003-1284-2558</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2024-10, Vol.97, p.103278, Article 103278
issn 1361-8415
1361-8423
1361-8423
language eng
recordid cdi_proquest_miscellaneous_3085116572
source ScienceDirect Journals
subjects Algorithms
Brain - diagnostic imaging
Brain MRI
Deep Learning
Generative modelling
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging - methods
Medical imaging segmentation
Multimodal Imaging - methods
title Generating multi-pathological and multi-modal images and labels for brain MRI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20multi-pathological%20and%20multi-modal%20images%20and%20labels%20for%20brain%20MRI&rft.jtitle=Medical%20image%20analysis&rft.au=Fernandez,%20Virginia&rft.date=2024-10&rft.volume=97&rft.spage=103278&rft.pages=103278-&rft.artnum=103278&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2024.103278&rft_dat=%3Cproquest_cross%3E3085116572%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c239t-e0a29a1dbccc2a18bef0b9f8383e98beb72d8a7695a37b5d3e758412869c4f783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085116572&rft_id=info:pmid/39059240&rfr_iscdi=true