Loading…

ZnO:CuO Composites Obtained by Rapid Joule Heating for Photocatalysis

Semiconductor oxides belonging to various families are ideal candidates for application in photocatalytic processes. One of the challenges facing photocatalytic processes today is improving their efficiency under sunlight irradiation. In this study, the growth and characterization of semiconductor o...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-07, Vol.17 (14), p.3502
Main Authors: Fernández-Calzado, Adrián, Calvo-Villoslada, Aarón, Fernández, Paloma, Sotillo, Belén
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconductor oxides belonging to various families are ideal candidates for application in photocatalytic processes. One of the challenges facing photocatalytic processes today is improving their efficiency under sunlight irradiation. In this study, the growth and characterization of semiconductor oxide nanostructures and composites based on the ZnO and CuO families are proposed. The selected growth method is the resistive heating of Zn and Cu wires to produce the corresponding oxides, combined with galvanic corrosion of Zn. An exhaustive characterization of the materials obtained has been carried out using techniques based on scanning electron microscopy and optical spectroscopies. The method we have followed and the conditions used in this study present promising results, not only from a degradation efficiency point of view but also because it is a cheap, easy, and fast growth method. These characteristics are essential in order to scale the process beyond the laboratory.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17143502