Loading…

Investigation of Physical-Mechanical Properties and Microstructure of Mortars with Perlite and Thermal-Treated Materials

This study aimed to obtain and characterize a mortar with perlite aggregate and thermal-treated materials that could substitute for Portland cement. First, the thermally treated materials were obtained by calcinating old Portland cement (OC-tt) and concrete demolition waste (CC-tt) at 550 °C, for 3...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-07, Vol.17 (14), p.3412
Main Authors: Saca, Nastasia, Radu, Lidia, Stoleriu, Stefania, Dobre, Daniela, Calotă, Răzvan, Truşcă, Roxana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to obtain and characterize a mortar with perlite aggregate and thermal-treated materials that could substitute for Portland cement. First, the thermally treated materials were obtained by calcinating old Portland cement (OC-tt) and concrete demolition waste (CC-tt) at 550 °C, for 3 h. Second, plastic mortars with a perlite: cement volume ratio of 3:1 were prepared and tested for water absorption, mechanical strength, and thermal conductivity. The microstructure was also analyzed. Portland cement (R) was partially substituted with 10%, 30%, and 50% OC-tt. Thermal-treated materials negatively influenced the compressive and flexural strengths at 7 and 28 days. With an increase in the substitution percentage to 50%, the decrease in the compressive strength was 40% for OC-tt and 62.5% for CC-tt. The presence of 10% OC-tt/CC-tt positively influenced the water absorption. The thermal conductivity of the tested mortars was in the range of 0.37-0.48 W/m·K. SEM analysis shows the expanded perlite pores remained unbroken.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17143412