Loading…
RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows
•RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multi...
Saved in:
Published in: | Physics and imaging in radiation oncology 2024-07, Vol.31, p.100607, Article 100607 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3 |
container_end_page | |
container_issue | |
container_start_page | 100607 |
container_title | Physics and imaging in radiation oncology |
container_volume | 31 |
creator | Ersted Rasmussen, Mathis Dueholm Vestergaard, Casper Folsted Kallehauge, Jesper Ren, Jintao Haislund Guldberg, Maiken Nørrevang, Ole Vindelev Elstrøm, Ulrik Sofia Korreman, Stine |
description | •RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multiple GPUs and computers.
The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity. |
doi_str_mv | 10.1016/j.phro.2024.100607 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085688315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405631624000770</els_id><sourcerecordid>3085688315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnROJNxXsCFYemmWn4Kusq4mYy_ySQmRtfkNly6aamihOrp9Dv40FL2aFy54ga-c4BzCHnO2Yozrl_tV9Mup5Vgoq0bTLP1I3IpWqYaLbl-_M98Qa5L2TPGxLqXSrKn5EL2bM256i_Jzy_g3uIU0-k1vaE-w4DHlL9TnzIN44zbDHMYt3VudulQkDq8x5gmdLQkPx8hI4XRUchz8MEGiL9lMYYtjhbpkBzGQgvCELGUeFqOE83gQpp3mGE60eVCH9OxPCNPPMSC1w_rFfn2_t3X24_N3ecPn25v7horOj43_UaDFS30rWPtRqqu98KBlxvlJPjOa1Exp1qpJfRKSgfI-85aB61uGffyirw8-045_Thgmc0Qiq2PhhHrJ41kndJdJ7mqqDijNqdSMnoz5TBAPhnOzFKE2ZulCLMUYc5FVNGLB__DZkD3V_In9gq8OQM1G7wPmE2xYcnLhYx2Ni6F__n_AtkInSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085688315</pqid></control><display><type>article</type><title>RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows</title><source>Open Access: PubMed Central</source><creator>Ersted Rasmussen, Mathis ; Dueholm Vestergaard, Casper ; Folsted Kallehauge, Jesper ; Ren, Jintao ; Haislund Guldberg, Maiken ; Nørrevang, Ole ; Vindelev Elstrøm, Ulrik ; Sofia Korreman, Stine</creator><creatorcontrib>Ersted Rasmussen, Mathis ; Dueholm Vestergaard, Casper ; Folsted Kallehauge, Jesper ; Ren, Jintao ; Haislund Guldberg, Maiken ; Nørrevang, Ole ; Vindelev Elstrøm, Ulrik ; Sofia Korreman, Stine</creatorcontrib><description>•RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multiple GPUs and computers.
The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.</description><identifier>ISSN: 2405-6316</identifier><identifier>EISSN: 2405-6316</identifier><identifier>DOI: 10.1016/j.phro.2024.100607</identifier><identifier>PMID: 39071159</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial intelligence ; Container ; DAG ; Deploy ; In-house ; Radiotherapy</subject><ispartof>Physics and imaging in radiation oncology, 2024-07, Vol.31, p.100607, Article 100607</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3</cites><orcidid>0000-0002-1558-7196 ; 0000-0002-2100-0208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39071159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ersted Rasmussen, Mathis</creatorcontrib><creatorcontrib>Dueholm Vestergaard, Casper</creatorcontrib><creatorcontrib>Folsted Kallehauge, Jesper</creatorcontrib><creatorcontrib>Ren, Jintao</creatorcontrib><creatorcontrib>Haislund Guldberg, Maiken</creatorcontrib><creatorcontrib>Nørrevang, Ole</creatorcontrib><creatorcontrib>Vindelev Elstrøm, Ulrik</creatorcontrib><creatorcontrib>Sofia Korreman, Stine</creatorcontrib><title>RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows</title><title>Physics and imaging in radiation oncology</title><addtitle>Phys Imaging Radiat Oncol</addtitle><description>•RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multiple GPUs and computers.
The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.</description><subject>Artificial intelligence</subject><subject>Container</subject><subject>DAG</subject><subject>Deploy</subject><subject>In-house</subject><subject>Radiotherapy</subject><issn>2405-6316</issn><issn>2405-6316</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFCEUhYnROJNxXsCFYemmWn4Kusq4mYy_ySQmRtfkNly6aamihOrp9Dv40FL2aFy54ga-c4BzCHnO2Yozrl_tV9Mup5Vgoq0bTLP1I3IpWqYaLbl-_M98Qa5L2TPGxLqXSrKn5EL2bM256i_Jzy_g3uIU0-k1vaE-w4DHlL9TnzIN44zbDHMYt3VudulQkDq8x5gmdLQkPx8hI4XRUchz8MEGiL9lMYYtjhbpkBzGQgvCELGUeFqOE83gQpp3mGE60eVCH9OxPCNPPMSC1w_rFfn2_t3X24_N3ecPn25v7horOj43_UaDFS30rWPtRqqu98KBlxvlJPjOa1Exp1qpJfRKSgfI-85aB61uGffyirw8-045_Thgmc0Qiq2PhhHrJ41kndJdJ7mqqDijNqdSMnoz5TBAPhnOzFKE2ZulCLMUYc5FVNGLB__DZkD3V_In9gq8OQM1G7wPmE2xYcnLhYx2Ni6F__n_AtkInSI</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Ersted Rasmussen, Mathis</creator><creator>Dueholm Vestergaard, Casper</creator><creator>Folsted Kallehauge, Jesper</creator><creator>Ren, Jintao</creator><creator>Haislund Guldberg, Maiken</creator><creator>Nørrevang, Ole</creator><creator>Vindelev Elstrøm, Ulrik</creator><creator>Sofia Korreman, Stine</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1558-7196</orcidid><orcidid>https://orcid.org/0000-0002-2100-0208</orcidid></search><sort><creationdate>202407</creationdate><title>RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows</title><author>Ersted Rasmussen, Mathis ; Dueholm Vestergaard, Casper ; Folsted Kallehauge, Jesper ; Ren, Jintao ; Haislund Guldberg, Maiken ; Nørrevang, Ole ; Vindelev Elstrøm, Ulrik ; Sofia Korreman, Stine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Container</topic><topic>DAG</topic><topic>Deploy</topic><topic>In-house</topic><topic>Radiotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ersted Rasmussen, Mathis</creatorcontrib><creatorcontrib>Dueholm Vestergaard, Casper</creatorcontrib><creatorcontrib>Folsted Kallehauge, Jesper</creatorcontrib><creatorcontrib>Ren, Jintao</creatorcontrib><creatorcontrib>Haislund Guldberg, Maiken</creatorcontrib><creatorcontrib>Nørrevang, Ole</creatorcontrib><creatorcontrib>Vindelev Elstrøm, Ulrik</creatorcontrib><creatorcontrib>Sofia Korreman, Stine</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics and imaging in radiation oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ersted Rasmussen, Mathis</au><au>Dueholm Vestergaard, Casper</au><au>Folsted Kallehauge, Jesper</au><au>Ren, Jintao</au><au>Haislund Guldberg, Maiken</au><au>Nørrevang, Ole</au><au>Vindelev Elstrøm, Ulrik</au><au>Sofia Korreman, Stine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows</atitle><jtitle>Physics and imaging in radiation oncology</jtitle><addtitle>Phys Imaging Radiat Oncol</addtitle><date>2024-07</date><risdate>2024</risdate><volume>31</volume><spage>100607</spage><pages>100607-</pages><artnum>100607</artnum><issn>2405-6316</issn><eissn>2405-6316</eissn><abstract>•RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multiple GPUs and computers.
The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39071159</pmid><doi>10.1016/j.phro.2024.100607</doi><orcidid>https://orcid.org/0000-0002-1558-7196</orcidid><orcidid>https://orcid.org/0000-0002-2100-0208</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-6316 |
ispartof | Physics and imaging in radiation oncology, 2024-07, Vol.31, p.100607, Article 100607 |
issn | 2405-6316 2405-6316 |
language | eng |
recordid | cdi_proquest_miscellaneous_3085688315 |
source | Open Access: PubMed Central |
subjects | Artificial intelligence Container DAG Deploy In-house Radiotherapy |
title | RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RadDeploy:%20A%20framework%20for%20integrating%20in-house%20developed%20software%20and%20artificial%20intelligence%20models%20seamlessly%20into%20radiotherapy%20workflows&rft.jtitle=Physics%20and%20imaging%20in%20radiation%20oncology&rft.au=Ersted%20Rasmussen,%20Mathis&rft.date=2024-07&rft.volume=31&rft.spage=100607&rft.pages=100607-&rft.artnum=100607&rft.issn=2405-6316&rft.eissn=2405-6316&rft_id=info:doi/10.1016/j.phro.2024.100607&rft_dat=%3Cproquest_cross%3E3085688315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085688315&rft_id=info:pmid/39071159&rfr_iscdi=true |