Loading…

RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows

•RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multi...

Full description

Saved in:
Bibliographic Details
Published in:Physics and imaging in radiation oncology 2024-07, Vol.31, p.100607, Article 100607
Main Authors: Ersted Rasmussen, Mathis, Dueholm Vestergaard, Casper, Folsted Kallehauge, Jesper, Ren, Jintao, Haislund Guldberg, Maiken, Nørrevang, Ole, Vindelev Elstrøm, Ulrik, Sofia Korreman, Stine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3
container_end_page
container_issue
container_start_page 100607
container_title Physics and imaging in radiation oncology
container_volume 31
creator Ersted Rasmussen, Mathis
Dueholm Vestergaard, Casper
Folsted Kallehauge, Jesper
Ren, Jintao
Haislund Guldberg, Maiken
Nørrevang, Ole
Vindelev Elstrøm, Ulrik
Sofia Korreman, Stine
description •RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multiple GPUs and computers. The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.
doi_str_mv 10.1016/j.phro.2024.100607
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085688315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405631624000770</els_id><sourcerecordid>3085688315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnROJNxXsCFYemmWn4Kusq4mYy_ySQmRtfkNly6aamihOrp9Dv40FL2aFy54ga-c4BzCHnO2Yozrl_tV9Mup5Vgoq0bTLP1I3IpWqYaLbl-_M98Qa5L2TPGxLqXSrKn5EL2bM256i_Jzy_g3uIU0-k1vaE-w4DHlL9TnzIN44zbDHMYt3VudulQkDq8x5gmdLQkPx8hI4XRUchz8MEGiL9lMYYtjhbpkBzGQgvCELGUeFqOE83gQpp3mGE60eVCH9OxPCNPPMSC1w_rFfn2_t3X24_N3ecPn25v7horOj43_UaDFS30rWPtRqqu98KBlxvlJPjOa1Exp1qpJfRKSgfI-85aB61uGffyirw8-045_Thgmc0Qiq2PhhHrJ41kndJdJ7mqqDijNqdSMnoz5TBAPhnOzFKE2ZulCLMUYc5FVNGLB__DZkD3V_In9gq8OQM1G7wPmE2xYcnLhYx2Ni6F__n_AtkInSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085688315</pqid></control><display><type>article</type><title>RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows</title><source>Open Access: PubMed Central</source><creator>Ersted Rasmussen, Mathis ; Dueholm Vestergaard, Casper ; Folsted Kallehauge, Jesper ; Ren, Jintao ; Haislund Guldberg, Maiken ; Nørrevang, Ole ; Vindelev Elstrøm, Ulrik ; Sofia Korreman, Stine</creator><creatorcontrib>Ersted Rasmussen, Mathis ; Dueholm Vestergaard, Casper ; Folsted Kallehauge, Jesper ; Ren, Jintao ; Haislund Guldberg, Maiken ; Nørrevang, Ole ; Vindelev Elstrøm, Ulrik ; Sofia Korreman, Stine</creatorcontrib><description>•RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multiple GPUs and computers. The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.</description><identifier>ISSN: 2405-6316</identifier><identifier>EISSN: 2405-6316</identifier><identifier>DOI: 10.1016/j.phro.2024.100607</identifier><identifier>PMID: 39071159</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Artificial intelligence ; Container ; DAG ; Deploy ; In-house ; Radiotherapy</subject><ispartof>Physics and imaging in radiation oncology, 2024-07, Vol.31, p.100607, Article 100607</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3</cites><orcidid>0000-0002-1558-7196 ; 0000-0002-2100-0208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39071159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ersted Rasmussen, Mathis</creatorcontrib><creatorcontrib>Dueholm Vestergaard, Casper</creatorcontrib><creatorcontrib>Folsted Kallehauge, Jesper</creatorcontrib><creatorcontrib>Ren, Jintao</creatorcontrib><creatorcontrib>Haislund Guldberg, Maiken</creatorcontrib><creatorcontrib>Nørrevang, Ole</creatorcontrib><creatorcontrib>Vindelev Elstrøm, Ulrik</creatorcontrib><creatorcontrib>Sofia Korreman, Stine</creatorcontrib><title>RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows</title><title>Physics and imaging in radiation oncology</title><addtitle>Phys Imaging Radiat Oncol</addtitle><description>•RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multiple GPUs and computers. The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.</description><subject>Artificial intelligence</subject><subject>Container</subject><subject>DAG</subject><subject>Deploy</subject><subject>In-house</subject><subject>Radiotherapy</subject><issn>2405-6316</issn><issn>2405-6316</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OFCEUhYnROJNxXsCFYemmWn4Kusq4mYy_ySQmRtfkNly6aamihOrp9Dv40FL2aFy54ga-c4BzCHnO2Yozrl_tV9Mup5Vgoq0bTLP1I3IpWqYaLbl-_M98Qa5L2TPGxLqXSrKn5EL2bM256i_Jzy_g3uIU0-k1vaE-w4DHlL9TnzIN44zbDHMYt3VudulQkDq8x5gmdLQkPx8hI4XRUchz8MEGiL9lMYYtjhbpkBzGQgvCELGUeFqOE83gQpp3mGE60eVCH9OxPCNPPMSC1w_rFfn2_t3X24_N3ecPn25v7horOj43_UaDFS30rWPtRqqu98KBlxvlJPjOa1Exp1qpJfRKSgfI-85aB61uGffyirw8-045_Thgmc0Qiq2PhhHrJ41kndJdJ7mqqDijNqdSMnoz5TBAPhnOzFKE2ZulCLMUYc5FVNGLB__DZkD3V_In9gq8OQM1G7wPmE2xYcnLhYx2Ni6F__n_AtkInSI</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Ersted Rasmussen, Mathis</creator><creator>Dueholm Vestergaard, Casper</creator><creator>Folsted Kallehauge, Jesper</creator><creator>Ren, Jintao</creator><creator>Haislund Guldberg, Maiken</creator><creator>Nørrevang, Ole</creator><creator>Vindelev Elstrøm, Ulrik</creator><creator>Sofia Korreman, Stine</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1558-7196</orcidid><orcidid>https://orcid.org/0000-0002-2100-0208</orcidid></search><sort><creationdate>202407</creationdate><title>RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows</title><author>Ersted Rasmussen, Mathis ; Dueholm Vestergaard, Casper ; Folsted Kallehauge, Jesper ; Ren, Jintao ; Haislund Guldberg, Maiken ; Nørrevang, Ole ; Vindelev Elstrøm, Ulrik ; Sofia Korreman, Stine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Container</topic><topic>DAG</topic><topic>Deploy</topic><topic>In-house</topic><topic>Radiotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ersted Rasmussen, Mathis</creatorcontrib><creatorcontrib>Dueholm Vestergaard, Casper</creatorcontrib><creatorcontrib>Folsted Kallehauge, Jesper</creatorcontrib><creatorcontrib>Ren, Jintao</creatorcontrib><creatorcontrib>Haislund Guldberg, Maiken</creatorcontrib><creatorcontrib>Nørrevang, Ole</creatorcontrib><creatorcontrib>Vindelev Elstrøm, Ulrik</creatorcontrib><creatorcontrib>Sofia Korreman, Stine</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics and imaging in radiation oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ersted Rasmussen, Mathis</au><au>Dueholm Vestergaard, Casper</au><au>Folsted Kallehauge, Jesper</au><au>Ren, Jintao</au><au>Haislund Guldberg, Maiken</au><au>Nørrevang, Ole</au><au>Vindelev Elstrøm, Ulrik</au><au>Sofia Korreman, Stine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows</atitle><jtitle>Physics and imaging in radiation oncology</jtitle><addtitle>Phys Imaging Radiat Oncol</addtitle><date>2024-07</date><risdate>2024</risdate><volume>31</volume><spage>100607</spage><pages>100607-</pages><artnum>100607</artnum><issn>2405-6316</issn><eissn>2405-6316</eissn><abstract>•RadDeploy is a deployment platform for in-house containerized software and AI-models.•RadDeploy offers a comprehensive DICOM-based triggering of flows.•Flows can have multiple DICOM series as input.•Flows can be designed as directed acyclic graphs of docker containers.•RadDeploy scales across multiple GPUs and computers. The use of and research in automation and artificial intelligence (AI) in radiotherapy is moving with incredible pace. Many innovations do, however, not make it into the clinic. One technical reason for this may be the lack of a platform to deploy such software into clinical practice. We suggest RadDeploy as a framework for integrating containerized software in clinical workflows outside of treatment planning systems. RadDeploy supports multiple DICOM as input for model containers and can run model containers asynchronously across GPUs and computers. This technical note summarizes the inner workings of RadDeploy and demonstrates three use-cases with varying complexity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39071159</pmid><doi>10.1016/j.phro.2024.100607</doi><orcidid>https://orcid.org/0000-0002-1558-7196</orcidid><orcidid>https://orcid.org/0000-0002-2100-0208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-6316
ispartof Physics and imaging in radiation oncology, 2024-07, Vol.31, p.100607, Article 100607
issn 2405-6316
2405-6316
language eng
recordid cdi_proquest_miscellaneous_3085688315
source Open Access: PubMed Central
subjects Artificial intelligence
Container
DAG
Deploy
In-house
Radiotherapy
title RadDeploy: A framework for integrating in-house developed software and artificial intelligence models seamlessly into radiotherapy workflows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RadDeploy:%20A%20framework%20for%20integrating%20in-house%20developed%20software%20and%20artificial%20intelligence%20models%20seamlessly%20into%20radiotherapy%20workflows&rft.jtitle=Physics%20and%20imaging%20in%20radiation%20oncology&rft.au=Ersted%20Rasmussen,%20Mathis&rft.date=2024-07&rft.volume=31&rft.spage=100607&rft.pages=100607-&rft.artnum=100607&rft.issn=2405-6316&rft.eissn=2405-6316&rft_id=info:doi/10.1016/j.phro.2024.100607&rft_dat=%3Cproquest_cross%3E3085688315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-9b6ac24a94d04b3589f2daf3b5d3af8f62281d54363a9533dae198ccda46401f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3085688315&rft_id=info:pmid/39071159&rfr_iscdi=true