Loading…

Punishment-resistant alcohol intake is mediated by the nucleus accumbens shell in female rats

Alcohol use is widespread across many societies. While most people can control their alcohol use, a vulnerable sub-population develops alcohol use disorder, characterized by continued alcohol use despite negative consequences. We used a rat model of alcohol self-administration despite negative conse...

Full description

Saved in:
Bibliographic Details
Published in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2024-12, Vol.49 (13), p.2022-2031
Main Authors: McDonald, Allison J., Nemat, Panthea, van ‘t Hullenaar, Thijs, Schetters, Dustin, van Mourik, Yvar, Alonso-Lozares, Isis, De Vries, Taco J., Marchant, Nathan J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alcohol use is widespread across many societies. While most people can control their alcohol use, a vulnerable sub-population develops alcohol use disorder, characterized by continued alcohol use despite negative consequences. We used a rat model of alcohol self-administration despite negative consequences to identify brain activity associated with this addiction-like behaviour. We and others have previously shown that response-contingent punishment of alcohol self-administration with mild footshock reliably identifies two sub-populations. One group substantially decreases alcohol self-administration in the face of punishment (punishment-sensitive, controlled) and another group continues alcohol self-administration despite negative consequences (punishment-resistant, addiction-like behaviour). In this study, we aimed to validate this model in females and identify associated brain regions. We trained Long-Evans outbred rats ( n  = 96) to self-administer 20% ethanol, and then introduced response-contingent footshock. We found that female rats consumed more alcohol in unpunished and punished sessions compared to male rats. In one group of rats ( n  = 24, m/f), we identified neuronal activity associated with punishment-resistant alcohol self-administration using the neurobiological marker of activity cFos. We found lower cFos expression in NAcSh associated with punishment-resistant alcohol self-administration. In another group of rats ( n  = 72, m/f), we used chemogenetic inhibition of NAcSh during punished alcohol self-administration. We found that chemogenetic NAcSh inhibition had no effect on unpunished alcohol self-administration but selectively increased punished alcohol self-administration in punishment-resistant female rats. These results indicate that more female rats develop punishment-resistant alcohol consumption, and that NAcSh hypofunction may underlie this phenotype.
ISSN:0893-133X
1740-634X
1740-634X
DOI:10.1038/s41386-024-01940-0