Loading…

Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis

Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Her...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-09, Vol.36 (39), p.e2407266-n/a
Main Authors: Zhang, Zhen, Li, Minzhe, Yang, Shuwen, Ma, Qianyi, Dang, Jianan, Feng, Renfei, Bai, Zhengyu, Liu, Dianhua, Feng, Ming, Chen, Zhongwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3
container_end_page n/a
container_issue 39
container_start_page e2407266
container_title Advanced materials (Weinheim)
container_volume 36
creator Zhang, Zhen
Li, Minzhe
Yang, Shuwen
Ma, Qianyi
Dang, Jianan
Feng, Renfei
Bai, Zhengyu
Liu, Dianhua
Feng, Ming
Chen, Zhongwei
description Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12‐ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate‐limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial‐level partial current density of 322 mA cm−2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite‐based electrocatalysts for industrial‐level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion. An innovative electrically conductive zeolite is designed as a favorable electrocatalytic support, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of 12‐ring framework with tunable electronic and geometric metal–support interactions, achieving industrial‐level formic acid electrosynthesis from CO2 electrolysis and opening a new era of zeolites in applications of electrocatalysis and energy conversion.
doi_str_mv 10.1002/adma.202407266
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086384307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086384307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERZfClSOyxIVLtmM7ceJjtLRQqYXDlgsXy7EnwpUTL3YC2hvvwBvyJGS1pZW4cJrL93-amZ-QVwzWDICfGzeYNQdeQs2lfEJWrOKsKEFVT8kKlKgKJcvmlDzP-Q4AlAT5jJwKBQ3nACsybeLoZjv570i_YAx-Qrqdd7uYJnT0anR-Hn7__HXrR9qGEPf0oxmjDXOeMGXax0S3GPCYN6OjW2uC6QLSy5gGb2lrvaMXByLFvB-nr5h9fkFOehMyvryfZ-Tz5cXt5kNx_en91aa9LixXjSxsKUzJXK2q3gihOqkElqy0ijWNlZ3rOyutEKyuUIJzxvYMy6quOykE56oXZ-Tt0btL8duMedKDzxZDMCPGOWsBjRRNKaBe0Df_oHdxTuOynRaMAV_eWx-o9ZGyyzU5Ya93yQ8m7TUDfehDH_rQD30sgdf32rkb0D3gfwtYAHUEfviA-__odPvupn2U_wGvs5ib</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110207277</pqid></control><display><type>article</type><title>Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Zhen ; Li, Minzhe ; Yang, Shuwen ; Ma, Qianyi ; Dang, Jianan ; Feng, Renfei ; Bai, Zhengyu ; Liu, Dianhua ; Feng, Ming ; Chen, Zhongwei</creator><creatorcontrib>Zhang, Zhen ; Li, Minzhe ; Yang, Shuwen ; Ma, Qianyi ; Dang, Jianan ; Feng, Renfei ; Bai, Zhengyu ; Liu, Dianhua ; Feng, Ming ; Chen, Zhongwei</creatorcontrib><description>Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12‐ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate‐limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial‐level partial current density of 322 mA cm−2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite‐based electrocatalysts for industrial‐level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion. An innovative electrically conductive zeolite is designed as a favorable electrocatalytic support, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of 12‐ring framework with tunable electronic and geometric metal–support interactions, achieving industrial‐level formic acid electrosynthesis from CO2 electrolysis and opening a new era of zeolites in applications of electrocatalysis and energy conversion.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202407266</identifier><identifier>PMID: 39082200</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acids ; Carbon dioxide ; CO2 electroreduction ; conductive zeolites ; Current density ; Electrocatalysts ; Electrolysis ; Electron density ; Energy conversion ; Formic acid ; metal–support interactions ; Nanoalloys ; Nanoclusters ; Zeolites</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2407266-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3</cites><orcidid>0000-0003-3463-5509 ; 0000-0002-3591-932X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39082200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Li, Minzhe</creatorcontrib><creatorcontrib>Yang, Shuwen</creatorcontrib><creatorcontrib>Ma, Qianyi</creatorcontrib><creatorcontrib>Dang, Jianan</creatorcontrib><creatorcontrib>Feng, Renfei</creatorcontrib><creatorcontrib>Bai, Zhengyu</creatorcontrib><creatorcontrib>Liu, Dianhua</creatorcontrib><creatorcontrib>Feng, Ming</creatorcontrib><creatorcontrib>Chen, Zhongwei</creatorcontrib><title>Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12‐ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate‐limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial‐level partial current density of 322 mA cm−2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite‐based electrocatalysts for industrial‐level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion. An innovative electrically conductive zeolite is designed as a favorable electrocatalytic support, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of 12‐ring framework with tunable electronic and geometric metal–support interactions, achieving industrial‐level formic acid electrosynthesis from CO2 electrolysis and opening a new era of zeolites in applications of electrocatalysis and energy conversion.</description><subject>Acids</subject><subject>Carbon dioxide</subject><subject>CO2 electroreduction</subject><subject>conductive zeolites</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electron density</subject><subject>Energy conversion</subject><subject>Formic acid</subject><subject>metal–support interactions</subject><subject>Nanoalloys</subject><subject>Nanoclusters</subject><subject>Zeolites</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERZfClSOyxIVLtmM7ceJjtLRQqYXDlgsXy7EnwpUTL3YC2hvvwBvyJGS1pZW4cJrL93-amZ-QVwzWDICfGzeYNQdeQs2lfEJWrOKsKEFVT8kKlKgKJcvmlDzP-Q4AlAT5jJwKBQ3nACsybeLoZjv570i_YAx-Qrqdd7uYJnT0anR-Hn7__HXrR9qGEPf0oxmjDXOeMGXax0S3GPCYN6OjW2uC6QLSy5gGb2lrvaMXByLFvB-nr5h9fkFOehMyvryfZ-Tz5cXt5kNx_en91aa9LixXjSxsKUzJXK2q3gihOqkElqy0ijWNlZ3rOyutEKyuUIJzxvYMy6quOykE56oXZ-Tt0btL8duMedKDzxZDMCPGOWsBjRRNKaBe0Df_oHdxTuOynRaMAV_eWx-o9ZGyyzU5Ya93yQ8m7TUDfehDH_rQD30sgdf32rkb0D3gfwtYAHUEfviA-__odPvupn2U_wGvs5ib</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhang, Zhen</creator><creator>Li, Minzhe</creator><creator>Yang, Shuwen</creator><creator>Ma, Qianyi</creator><creator>Dang, Jianan</creator><creator>Feng, Renfei</creator><creator>Bai, Zhengyu</creator><creator>Liu, Dianhua</creator><creator>Feng, Ming</creator><creator>Chen, Zhongwei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3463-5509</orcidid><orcidid>https://orcid.org/0000-0002-3591-932X</orcidid></search><sort><creationdate>20240901</creationdate><title>Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis</title><author>Zhang, Zhen ; Li, Minzhe ; Yang, Shuwen ; Ma, Qianyi ; Dang, Jianan ; Feng, Renfei ; Bai, Zhengyu ; Liu, Dianhua ; Feng, Ming ; Chen, Zhongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Carbon dioxide</topic><topic>CO2 electroreduction</topic><topic>conductive zeolites</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electron density</topic><topic>Energy conversion</topic><topic>Formic acid</topic><topic>metal–support interactions</topic><topic>Nanoalloys</topic><topic>Nanoclusters</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Li, Minzhe</creatorcontrib><creatorcontrib>Yang, Shuwen</creatorcontrib><creatorcontrib>Ma, Qianyi</creatorcontrib><creatorcontrib>Dang, Jianan</creatorcontrib><creatorcontrib>Feng, Renfei</creatorcontrib><creatorcontrib>Bai, Zhengyu</creatorcontrib><creatorcontrib>Liu, Dianhua</creatorcontrib><creatorcontrib>Feng, Ming</creatorcontrib><creatorcontrib>Chen, Zhongwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhen</au><au>Li, Minzhe</au><au>Yang, Shuwen</au><au>Ma, Qianyi</au><au>Dang, Jianan</au><au>Feng, Renfei</au><au>Bai, Zhengyu</au><au>Liu, Dianhua</au><au>Feng, Ming</au><au>Chen, Zhongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>39</issue><spage>e2407266</spage><epage>n/a</epage><pages>e2407266-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12‐ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate‐limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial‐level partial current density of 322 mA cm−2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite‐based electrocatalysts for industrial‐level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion. An innovative electrically conductive zeolite is designed as a favorable electrocatalytic support, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of 12‐ring framework with tunable electronic and geometric metal–support interactions, achieving industrial‐level formic acid electrosynthesis from CO2 electrolysis and opening a new era of zeolites in applications of electrocatalysis and energy conversion.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39082200</pmid><doi>10.1002/adma.202407266</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3463-5509</orcidid><orcidid>https://orcid.org/0000-0002-3591-932X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2407266-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3086384307
source Wiley-Blackwell Read & Publish Collection
subjects Acids
Carbon dioxide
CO2 electroreduction
conductive zeolites
Current density
Electrocatalysts
Electrolysis
Electron density
Energy conversion
Formic acid
metal–support interactions
Nanoalloys
Nanoclusters
Zeolites
title Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20Zeolite%20Supported%20Indium%E2%80%93Tin%20Alloy%20Nanoclusters%20for%20Selective%20and%20Scalable%20Formic%20Acid%20Electrosynthesis&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Zhen&rft.date=2024-09-01&rft.volume=36&rft.issue=39&rft.spage=e2407266&rft.epage=n/a&rft.pages=e2407266-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202407266&rft_dat=%3Cproquest_cross%3E3086384307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110207277&rft_id=info:pmid/39082200&rfr_iscdi=true