Loading…
Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis
Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Her...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-09, Vol.36 (39), p.e2407266-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3 |
container_end_page | n/a |
container_issue | 39 |
container_start_page | e2407266 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Zhang, Zhen Li, Minzhe Yang, Shuwen Ma, Qianyi Dang, Jianan Feng, Renfei Bai, Zhengyu Liu, Dianhua Feng, Ming Chen, Zhongwei |
description | Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12‐ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate‐limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial‐level partial current density of 322 mA cm−2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite‐based electrocatalysts for industrial‐level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion.
An innovative electrically conductive zeolite is designed as a favorable electrocatalytic support, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of 12‐ring framework with tunable electronic and geometric metal–support interactions, achieving industrial‐level formic acid electrosynthesis from CO2 electrolysis and opening a new era of zeolites in applications of electrocatalysis and energy conversion. |
doi_str_mv | 10.1002/adma.202407266 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3086384307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086384307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERZfClSOyxIVLtmM7ceJjtLRQqYXDlgsXy7EnwpUTL3YC2hvvwBvyJGS1pZW4cJrL93-amZ-QVwzWDICfGzeYNQdeQs2lfEJWrOKsKEFVT8kKlKgKJcvmlDzP-Q4AlAT5jJwKBQ3nACsybeLoZjv570i_YAx-Qrqdd7uYJnT0anR-Hn7__HXrR9qGEPf0oxmjDXOeMGXax0S3GPCYN6OjW2uC6QLSy5gGb2lrvaMXByLFvB-nr5h9fkFOehMyvryfZ-Tz5cXt5kNx_en91aa9LixXjSxsKUzJXK2q3gihOqkElqy0ijWNlZ3rOyutEKyuUIJzxvYMy6quOykE56oXZ-Tt0btL8duMedKDzxZDMCPGOWsBjRRNKaBe0Df_oHdxTuOynRaMAV_eWx-o9ZGyyzU5Ya93yQ8m7TUDfehDH_rQD30sgdf32rkb0D3gfwtYAHUEfviA-__odPvupn2U_wGvs5ib</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110207277</pqid></control><display><type>article</type><title>Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhang, Zhen ; Li, Minzhe ; Yang, Shuwen ; Ma, Qianyi ; Dang, Jianan ; Feng, Renfei ; Bai, Zhengyu ; Liu, Dianhua ; Feng, Ming ; Chen, Zhongwei</creator><creatorcontrib>Zhang, Zhen ; Li, Minzhe ; Yang, Shuwen ; Ma, Qianyi ; Dang, Jianan ; Feng, Renfei ; Bai, Zhengyu ; Liu, Dianhua ; Feng, Ming ; Chen, Zhongwei</creatorcontrib><description>Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12‐ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate‐limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial‐level partial current density of 322 mA cm−2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite‐based electrocatalysts for industrial‐level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion.
An innovative electrically conductive zeolite is designed as a favorable electrocatalytic support, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of 12‐ring framework with tunable electronic and geometric metal–support interactions, achieving industrial‐level formic acid electrosynthesis from CO2 electrolysis and opening a new era of zeolites in applications of electrocatalysis and energy conversion.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202407266</identifier><identifier>PMID: 39082200</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acids ; Carbon dioxide ; CO2 electroreduction ; conductive zeolites ; Current density ; Electrocatalysts ; Electrolysis ; Electron density ; Energy conversion ; Formic acid ; metal–support interactions ; Nanoalloys ; Nanoclusters ; Zeolites</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2407266-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3</cites><orcidid>0000-0003-3463-5509 ; 0000-0002-3591-932X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39082200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Li, Minzhe</creatorcontrib><creatorcontrib>Yang, Shuwen</creatorcontrib><creatorcontrib>Ma, Qianyi</creatorcontrib><creatorcontrib>Dang, Jianan</creatorcontrib><creatorcontrib>Feng, Renfei</creatorcontrib><creatorcontrib>Bai, Zhengyu</creatorcontrib><creatorcontrib>Liu, Dianhua</creatorcontrib><creatorcontrib>Feng, Ming</creatorcontrib><creatorcontrib>Chen, Zhongwei</creatorcontrib><title>Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12‐ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate‐limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial‐level partial current density of 322 mA cm−2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite‐based electrocatalysts for industrial‐level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion.
An innovative electrically conductive zeolite is designed as a favorable electrocatalytic support, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of 12‐ring framework with tunable electronic and geometric metal–support interactions, achieving industrial‐level formic acid electrosynthesis from CO2 electrolysis and opening a new era of zeolites in applications of electrocatalysis and energy conversion.</description><subject>Acids</subject><subject>Carbon dioxide</subject><subject>CO2 electroreduction</subject><subject>conductive zeolites</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electron density</subject><subject>Energy conversion</subject><subject>Formic acid</subject><subject>metal–support interactions</subject><subject>Nanoalloys</subject><subject>Nanoclusters</subject><subject>Zeolites</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERZfClSOyxIVLtmM7ceJjtLRQqYXDlgsXy7EnwpUTL3YC2hvvwBvyJGS1pZW4cJrL93-amZ-QVwzWDICfGzeYNQdeQs2lfEJWrOKsKEFVT8kKlKgKJcvmlDzP-Q4AlAT5jJwKBQ3nACsybeLoZjv570i_YAx-Qrqdd7uYJnT0anR-Hn7__HXrR9qGEPf0oxmjDXOeMGXax0S3GPCYN6OjW2uC6QLSy5gGb2lrvaMXByLFvB-nr5h9fkFOehMyvryfZ-Tz5cXt5kNx_en91aa9LixXjSxsKUzJXK2q3gihOqkElqy0ijWNlZ3rOyutEKyuUIJzxvYMy6quOykE56oXZ-Tt0btL8duMedKDzxZDMCPGOWsBjRRNKaBe0Df_oHdxTuOynRaMAV_eWx-o9ZGyyzU5Ya93yQ8m7TUDfehDH_rQD30sgdf32rkb0D3gfwtYAHUEfviA-__odPvupn2U_wGvs5ib</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhang, Zhen</creator><creator>Li, Minzhe</creator><creator>Yang, Shuwen</creator><creator>Ma, Qianyi</creator><creator>Dang, Jianan</creator><creator>Feng, Renfei</creator><creator>Bai, Zhengyu</creator><creator>Liu, Dianhua</creator><creator>Feng, Ming</creator><creator>Chen, Zhongwei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3463-5509</orcidid><orcidid>https://orcid.org/0000-0002-3591-932X</orcidid></search><sort><creationdate>20240901</creationdate><title>Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis</title><author>Zhang, Zhen ; Li, Minzhe ; Yang, Shuwen ; Ma, Qianyi ; Dang, Jianan ; Feng, Renfei ; Bai, Zhengyu ; Liu, Dianhua ; Feng, Ming ; Chen, Zhongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Carbon dioxide</topic><topic>CO2 electroreduction</topic><topic>conductive zeolites</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electron density</topic><topic>Energy conversion</topic><topic>Formic acid</topic><topic>metal–support interactions</topic><topic>Nanoalloys</topic><topic>Nanoclusters</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Li, Minzhe</creatorcontrib><creatorcontrib>Yang, Shuwen</creatorcontrib><creatorcontrib>Ma, Qianyi</creatorcontrib><creatorcontrib>Dang, Jianan</creatorcontrib><creatorcontrib>Feng, Renfei</creatorcontrib><creatorcontrib>Bai, Zhengyu</creatorcontrib><creatorcontrib>Liu, Dianhua</creatorcontrib><creatorcontrib>Feng, Ming</creatorcontrib><creatorcontrib>Chen, Zhongwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhen</au><au>Li, Minzhe</au><au>Yang, Shuwen</au><au>Ma, Qianyi</au><au>Dang, Jianan</au><au>Feng, Renfei</au><au>Bai, Zhengyu</au><au>Liu, Dianhua</au><au>Feng, Ming</au><au>Chen, Zhongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>39</issue><spage>e2407266</spage><epage>n/a</epage><pages>e2407266-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2‐to‐formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12‐ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate‐limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial‐level partial current density of 322 mA cm−2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite‐based electrocatalysts for industrial‐level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion.
An innovative electrically conductive zeolite is designed as a favorable electrocatalytic support, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of 12‐ring framework with tunable electronic and geometric metal–support interactions, achieving industrial‐level formic acid electrosynthesis from CO2 electrolysis and opening a new era of zeolites in applications of electrocatalysis and energy conversion.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39082200</pmid><doi>10.1002/adma.202407266</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3463-5509</orcidid><orcidid>https://orcid.org/0000-0002-3591-932X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-09, Vol.36 (39), p.e2407266-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3086384307 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acids Carbon dioxide CO2 electroreduction conductive zeolites Current density Electrocatalysts Electrolysis Electron density Energy conversion Formic acid metal–support interactions Nanoalloys Nanoclusters Zeolites |
title | Conductive Zeolite Supported Indium–Tin Alloy Nanoclusters for Selective and Scalable Formic Acid Electrosynthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20Zeolite%20Supported%20Indium%E2%80%93Tin%20Alloy%20Nanoclusters%20for%20Selective%20and%20Scalable%20Formic%20Acid%20Electrosynthesis&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Zhen&rft.date=2024-09-01&rft.volume=36&rft.issue=39&rft.spage=e2407266&rft.epage=n/a&rft.pages=e2407266-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202407266&rft_dat=%3Cproquest_cross%3E3086384307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2986-c43a41d795fa339b693e414c9188c6bdfbc6c33175e60ddacf1e4577b633229f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110207277&rft_id=info:pmid/39082200&rfr_iscdi=true |