Loading…

Different duration of exposure to a pulsed magnetic field can cause changes in mRNA expression of apoptotic genes in oleic acid-treated neuroblastoma cells

Neuroblastoma, a prevalent childhood tumor, poses significant challenges in therapeutic interventions, especially for high-risk cases. This study aims to fill a crucial gap in our understanding of neuroblastoma treatment by investigating the potential molecular impacts of short- and long-term pulsed...

Full description

Saved in:
Bibliographic Details
Published in:International journal of radiation biology 2024-10, Vol.100 (10), p.1-1480
Main Authors: Gökçek-Saraç, Çiğdem, Çetin, Ebru, Ateş, Kayhan, Özen, Şükrü, Karakurt, Serdar
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuroblastoma, a prevalent childhood tumor, poses significant challenges in therapeutic interventions, especially for high-risk cases. This study aims to fill a crucial gap in our understanding of neuroblastoma treatment by investigating the potential molecular impacts of short- and long-term pulsed magnetic field exposure on the neuronal apoptosis mechanism in an in vitro model of neuroblastoma treated with oleic acid (OA). Cells were cultured and divided into six following experimental groups: (I) Nontreated group (NT); (II) OA-treated group (OA); (III) Group treated with OA after being exposed to the pulsed magnetic field for 15-min (15 min PEMF + OA); (IV) Group treated with OA after being exposed to the pulsed magnetic field for 12 h (12 h PEMF + OA); (V) Group exposed to the pulsed magnetic field for 15 min (15 min PEMF); and (VI) Group exposed to the pulsed magnetic field for 12 h (12 h PEMF). Cell viability, rates of apoptosis, and mRNA levels of key apoptotic genes (TP53, Bcl2, Bax, and Caspase-3) were assessed. Significant reductions in cell viability were observed, particularly in the group treated with OA following long-term pulsed magnetic field exposure. Flow cytometry revealed elevated apoptosis rates, notably in the early stages of apoptosis. qRT-PCR analysis demonstrated increased expression of cleaved Caspase-3, Bax/Bcl2 ratio, and TP53 in cells treated with OA following long-term pulsed magnetic field exposure, signifying enhanced apoptotic pathways. The findings indicate that long-term pulsed magnetic field exposure and OA treatment exhibit potential synergistic effects leading to the induction of apoptosis in SH-SY5Y cells. We have concluded that stimulations of pulsed magnetic field have the potential to serve as an adjuvant therapy for oleic acid-based treatment of neuroblastoma.
ISSN:0955-3002
1362-3095
1362-3095
DOI:10.1080/09553002.2024.2386968