Loading…

Prediction of segmental motor outcomes in traumatic spinal cord injury: Advances beyond sum scores

Neurological and functional recovery after traumatic spinal cord injury (SCI) is highly challenged by the level of the lesion and the high heterogeneity in severity (different degrees of in/complete SCI) and spinal cord syndromes (hemi-, ant-, central-, and posterior cord). So far outcome prediction...

Full description

Saved in:
Bibliographic Details
Published in:Experimental neurology 2024-10, Vol.380, p.114905, Article 114905
Main Authors: Brüningk, Sarah C., Bourguignon, Lucie, Lukas, Louis P., Maier, Doris, Abel, Rainer, Weidner, Norbert, Rupp, Rüdiger, Geisler, Fred, Kramer, John L.K., Guest, James, Curt, Armin, Jutzeler, Catherine R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c296t-ecbbc55c2713421320aac3511c88ac873b567d36c9e6acc52ec1b71c787caebe3
container_end_page
container_issue
container_start_page 114905
container_title Experimental neurology
container_volume 380
creator Brüningk, Sarah C.
Bourguignon, Lucie
Lukas, Louis P.
Maier, Doris
Abel, Rainer
Weidner, Norbert
Rupp, Rüdiger
Geisler, Fred
Kramer, John L.K.
Guest, James
Curt, Armin
Jutzeler, Catherine R.
description Neurological and functional recovery after traumatic spinal cord injury (SCI) is highly challenged by the level of the lesion and the high heterogeneity in severity (different degrees of in/complete SCI) and spinal cord syndromes (hemi-, ant-, central-, and posterior cord). So far outcome predictions in clinical trials are limited in targeting sum motor scores of the upper (UEMS) and lower limb (LEMS) while neglecting that the distribution of motor function is essential for functional outcomes. The development of data-driven prediction models of detailed segmental motor recovery for all spinal segments from the level of lesion towards the lowest motor segments will improve the design of rehabilitation programs and the sensitivity of clinical trials. This study used acute-phase International Standards for Neurological Classification of SCI exams to forecast 6-month recovery of segmental motor scores as the primary evaluation endpoint. Secondary endpoints included severity grade improvement, independent walking, and self-care ability. Different similarity metrics were explored for k-nearest neighbor (kNN) matching within 1267 patients from the European Multicenter Study about Spinal Cord Injury before validation in 411 patients from the Sygen trial. The kNN performance was compared to linear and logistic regression models. We obtained a population-wide root-mean-squared error (RMSE) in motor score sequence of 0.76(0.14, 2.77) and competitive functional score predictions (AUCwalker = 0.92, AUCself-carer = 0.83) for the kNN algorithm, improving beyond the linear regression task (RMSElinear = 0.98(0.22, 2.57)). The validation cohort showed comparable results (RMSE = 0.75(0.13, 2.57), AUCwalker = 0.92). We deploy the final historic control model as a web tool for easy user interaction (https://hicsci.ethz.ch/). Our approach is the first to provide predictions across all motor segments independent of the level and severity of SCI. We provide a machine learning concept that is highly interpretable, i.e. the prediction formation process is transparent, that has been validated across European and American data sets, and provides reliable and validated algorithms to incorporate external control data to increase sensitivity and feasibility of multinational clinical trials. •Accurate recovery predictions at the level of segmental motor scores.•Historical twins by kNN regression as interpretable, data-driven recovery prediction.•Neurological and functional recovery is a
doi_str_mv 10.1016/j.expneurol.2024.114905
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3087698129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014488624002310</els_id><sourcerecordid>3087698129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-ecbbc55c2713421320aac3511c88ac873b567d36c9e6acc52ec1b71c787caebe3</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhq2qqCzQV2h97CXL2E7iuLcVogUJCQ5wtpzJbOVVEm9tB3XfHqMFrj3NYb5_fs3H2HcBawGivdyt6d9-piWGcS1B1mshagPNJ7YSYKCStYLPbAUg6qruuvaUnaW0AwBTS_2FnSoDRoNuV6x_iDR4zD7MPGx5oj8TzdmNfAo5RB6WjGGixP3Mc3TL5LJHnvZ-LgiGOJTFbomHn3wzPLsZC9nTIcwDT8vEUyEoXbCTrRsTfX2b5-zp1_Xj1U11d__79mpzV6E0ba4I-x6bBqUWqpZCSXAOVSMEdp3DTqu-afWgWjTUOsRGEopeC9SdRkc9qXP243h3H8PfhVK2k09I4-hmCkuyCjrdmk5IU1B9RDGGlCJt7T76ycWDFWBfBdud_RBsXwXbo-CS_PZWsvQTDR-5d6MF2BwBKq8-e4o2oadiZvCRMNsh-P-WvAAU3JMT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087698129</pqid></control><display><type>article</type><title>Prediction of segmental motor outcomes in traumatic spinal cord injury: Advances beyond sum scores</title><source>ScienceDirect Journals</source><creator>Brüningk, Sarah C. ; Bourguignon, Lucie ; Lukas, Louis P. ; Maier, Doris ; Abel, Rainer ; Weidner, Norbert ; Rupp, Rüdiger ; Geisler, Fred ; Kramer, John L.K. ; Guest, James ; Curt, Armin ; Jutzeler, Catherine R.</creator><creatorcontrib>Brüningk, Sarah C. ; Bourguignon, Lucie ; Lukas, Louis P. ; Maier, Doris ; Abel, Rainer ; Weidner, Norbert ; Rupp, Rüdiger ; Geisler, Fred ; Kramer, John L.K. ; Guest, James ; Curt, Armin ; Jutzeler, Catherine R. ; EMSCI study group</creatorcontrib><description>Neurological and functional recovery after traumatic spinal cord injury (SCI) is highly challenged by the level of the lesion and the high heterogeneity in severity (different degrees of in/complete SCI) and spinal cord syndromes (hemi-, ant-, central-, and posterior cord). So far outcome predictions in clinical trials are limited in targeting sum motor scores of the upper (UEMS) and lower limb (LEMS) while neglecting that the distribution of motor function is essential for functional outcomes. The development of data-driven prediction models of detailed segmental motor recovery for all spinal segments from the level of lesion towards the lowest motor segments will improve the design of rehabilitation programs and the sensitivity of clinical trials. This study used acute-phase International Standards for Neurological Classification of SCI exams to forecast 6-month recovery of segmental motor scores as the primary evaluation endpoint. Secondary endpoints included severity grade improvement, independent walking, and self-care ability. Different similarity metrics were explored for k-nearest neighbor (kNN) matching within 1267 patients from the European Multicenter Study about Spinal Cord Injury before validation in 411 patients from the Sygen trial. The kNN performance was compared to linear and logistic regression models. We obtained a population-wide root-mean-squared error (RMSE) in motor score sequence of 0.76(0.14, 2.77) and competitive functional score predictions (AUCwalker = 0.92, AUCself-carer = 0.83) for the kNN algorithm, improving beyond the linear regression task (RMSElinear = 0.98(0.22, 2.57)). The validation cohort showed comparable results (RMSE = 0.75(0.13, 2.57), AUCwalker = 0.92). We deploy the final historic control model as a web tool for easy user interaction (https://hicsci.ethz.ch/). Our approach is the first to provide predictions across all motor segments independent of the level and severity of SCI. We provide a machine learning concept that is highly interpretable, i.e. the prediction formation process is transparent, that has been validated across European and American data sets, and provides reliable and validated algorithms to incorporate external control data to increase sensitivity and feasibility of multinational clinical trials. •Accurate recovery predictions at the level of segmental motor scores.•Historical twins by kNN regression as interpretable, data-driven recovery prediction.•Neurological and functional recovery is addressed by kNN regression.•RMSE below the NLI is a suitable metric to score segmental motor score predictions.•Uncertainties of the ISCNCSCI assessments accounted for using resampling.</description><identifier>ISSN: 0014-4886</identifier><identifier>ISSN: 1090-2430</identifier><identifier>EISSN: 1090-2430</identifier><identifier>DOI: 10.1016/j.expneurol.2024.114905</identifier><identifier>PMID: 39097076</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Female ; Humans ; K-nearest neighbor ; kNN ; Machine learning ; Male ; Middle Aged ; Predictive Value of Tests ; Recovery of Function - physiology ; Recovery prediction ; Segmental motor scores ; Spinal Cord Injuries - diagnosis ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - rehabilitation ; Spinal cord injury ; Young Adult</subject><ispartof>Experimental neurology, 2024-10, Vol.380, p.114905, Article 114905</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-ecbbc55c2713421320aac3511c88ac873b567d36c9e6acc52ec1b71c787caebe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39097076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brüningk, Sarah C.</creatorcontrib><creatorcontrib>Bourguignon, Lucie</creatorcontrib><creatorcontrib>Lukas, Louis P.</creatorcontrib><creatorcontrib>Maier, Doris</creatorcontrib><creatorcontrib>Abel, Rainer</creatorcontrib><creatorcontrib>Weidner, Norbert</creatorcontrib><creatorcontrib>Rupp, Rüdiger</creatorcontrib><creatorcontrib>Geisler, Fred</creatorcontrib><creatorcontrib>Kramer, John L.K.</creatorcontrib><creatorcontrib>Guest, James</creatorcontrib><creatorcontrib>Curt, Armin</creatorcontrib><creatorcontrib>Jutzeler, Catherine R.</creatorcontrib><creatorcontrib>EMSCI study group</creatorcontrib><title>Prediction of segmental motor outcomes in traumatic spinal cord injury: Advances beyond sum scores</title><title>Experimental neurology</title><addtitle>Exp Neurol</addtitle><description>Neurological and functional recovery after traumatic spinal cord injury (SCI) is highly challenged by the level of the lesion and the high heterogeneity in severity (different degrees of in/complete SCI) and spinal cord syndromes (hemi-, ant-, central-, and posterior cord). So far outcome predictions in clinical trials are limited in targeting sum motor scores of the upper (UEMS) and lower limb (LEMS) while neglecting that the distribution of motor function is essential for functional outcomes. The development of data-driven prediction models of detailed segmental motor recovery for all spinal segments from the level of lesion towards the lowest motor segments will improve the design of rehabilitation programs and the sensitivity of clinical trials. This study used acute-phase International Standards for Neurological Classification of SCI exams to forecast 6-month recovery of segmental motor scores as the primary evaluation endpoint. Secondary endpoints included severity grade improvement, independent walking, and self-care ability. Different similarity metrics were explored for k-nearest neighbor (kNN) matching within 1267 patients from the European Multicenter Study about Spinal Cord Injury before validation in 411 patients from the Sygen trial. The kNN performance was compared to linear and logistic regression models. We obtained a population-wide root-mean-squared error (RMSE) in motor score sequence of 0.76(0.14, 2.77) and competitive functional score predictions (AUCwalker = 0.92, AUCself-carer = 0.83) for the kNN algorithm, improving beyond the linear regression task (RMSElinear = 0.98(0.22, 2.57)). The validation cohort showed comparable results (RMSE = 0.75(0.13, 2.57), AUCwalker = 0.92). We deploy the final historic control model as a web tool for easy user interaction (https://hicsci.ethz.ch/). Our approach is the first to provide predictions across all motor segments independent of the level and severity of SCI. We provide a machine learning concept that is highly interpretable, i.e. the prediction formation process is transparent, that has been validated across European and American data sets, and provides reliable and validated algorithms to incorporate external control data to increase sensitivity and feasibility of multinational clinical trials. •Accurate recovery predictions at the level of segmental motor scores.•Historical twins by kNN regression as interpretable, data-driven recovery prediction.•Neurological and functional recovery is addressed by kNN regression.•RMSE below the NLI is a suitable metric to score segmental motor score predictions.•Uncertainties of the ISCNCSCI assessments accounted for using resampling.</description><subject>Adult</subject><subject>Aged</subject><subject>Female</subject><subject>Humans</subject><subject>K-nearest neighbor</subject><subject>kNN</subject><subject>Machine learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Predictive Value of Tests</subject><subject>Recovery of Function - physiology</subject><subject>Recovery prediction</subject><subject>Segmental motor scores</subject><subject>Spinal Cord Injuries - diagnosis</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - rehabilitation</subject><subject>Spinal cord injury</subject><subject>Young Adult</subject><issn>0014-4886</issn><issn>1090-2430</issn><issn>1090-2430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhq2qqCzQV2h97CXL2E7iuLcVogUJCQ5wtpzJbOVVEm9tB3XfHqMFrj3NYb5_fs3H2HcBawGivdyt6d9-piWGcS1B1mshagPNJ7YSYKCStYLPbAUg6qruuvaUnaW0AwBTS_2FnSoDRoNuV6x_iDR4zD7MPGx5oj8TzdmNfAo5RB6WjGGixP3Mc3TL5LJHnvZ-LgiGOJTFbomHn3wzPLsZC9nTIcwDT8vEUyEoXbCTrRsTfX2b5-zp1_Xj1U11d__79mpzV6E0ba4I-x6bBqUWqpZCSXAOVSMEdp3DTqu-afWgWjTUOsRGEopeC9SdRkc9qXP243h3H8PfhVK2k09I4-hmCkuyCjrdmk5IU1B9RDGGlCJt7T76ycWDFWBfBdud_RBsXwXbo-CS_PZWsvQTDR-5d6MF2BwBKq8-e4o2oadiZvCRMNsh-P-WvAAU3JMT</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Brüningk, Sarah C.</creator><creator>Bourguignon, Lucie</creator><creator>Lukas, Louis P.</creator><creator>Maier, Doris</creator><creator>Abel, Rainer</creator><creator>Weidner, Norbert</creator><creator>Rupp, Rüdiger</creator><creator>Geisler, Fred</creator><creator>Kramer, John L.K.</creator><creator>Guest, James</creator><creator>Curt, Armin</creator><creator>Jutzeler, Catherine R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202410</creationdate><title>Prediction of segmental motor outcomes in traumatic spinal cord injury: Advances beyond sum scores</title><author>Brüningk, Sarah C. ; Bourguignon, Lucie ; Lukas, Louis P. ; Maier, Doris ; Abel, Rainer ; Weidner, Norbert ; Rupp, Rüdiger ; Geisler, Fred ; Kramer, John L.K. ; Guest, James ; Curt, Armin ; Jutzeler, Catherine R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-ecbbc55c2713421320aac3511c88ac873b567d36c9e6acc52ec1b71c787caebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Female</topic><topic>Humans</topic><topic>K-nearest neighbor</topic><topic>kNN</topic><topic>Machine learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Predictive Value of Tests</topic><topic>Recovery of Function - physiology</topic><topic>Recovery prediction</topic><topic>Segmental motor scores</topic><topic>Spinal Cord Injuries - diagnosis</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - rehabilitation</topic><topic>Spinal cord injury</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brüningk, Sarah C.</creatorcontrib><creatorcontrib>Bourguignon, Lucie</creatorcontrib><creatorcontrib>Lukas, Louis P.</creatorcontrib><creatorcontrib>Maier, Doris</creatorcontrib><creatorcontrib>Abel, Rainer</creatorcontrib><creatorcontrib>Weidner, Norbert</creatorcontrib><creatorcontrib>Rupp, Rüdiger</creatorcontrib><creatorcontrib>Geisler, Fred</creatorcontrib><creatorcontrib>Kramer, John L.K.</creatorcontrib><creatorcontrib>Guest, James</creatorcontrib><creatorcontrib>Curt, Armin</creatorcontrib><creatorcontrib>Jutzeler, Catherine R.</creatorcontrib><creatorcontrib>EMSCI study group</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brüningk, Sarah C.</au><au>Bourguignon, Lucie</au><au>Lukas, Louis P.</au><au>Maier, Doris</au><au>Abel, Rainer</au><au>Weidner, Norbert</au><au>Rupp, Rüdiger</au><au>Geisler, Fred</au><au>Kramer, John L.K.</au><au>Guest, James</au><au>Curt, Armin</au><au>Jutzeler, Catherine R.</au><aucorp>EMSCI study group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of segmental motor outcomes in traumatic spinal cord injury: Advances beyond sum scores</atitle><jtitle>Experimental neurology</jtitle><addtitle>Exp Neurol</addtitle><date>2024-10</date><risdate>2024</risdate><volume>380</volume><spage>114905</spage><pages>114905-</pages><artnum>114905</artnum><issn>0014-4886</issn><issn>1090-2430</issn><eissn>1090-2430</eissn><abstract>Neurological and functional recovery after traumatic spinal cord injury (SCI) is highly challenged by the level of the lesion and the high heterogeneity in severity (different degrees of in/complete SCI) and spinal cord syndromes (hemi-, ant-, central-, and posterior cord). So far outcome predictions in clinical trials are limited in targeting sum motor scores of the upper (UEMS) and lower limb (LEMS) while neglecting that the distribution of motor function is essential for functional outcomes. The development of data-driven prediction models of detailed segmental motor recovery for all spinal segments from the level of lesion towards the lowest motor segments will improve the design of rehabilitation programs and the sensitivity of clinical trials. This study used acute-phase International Standards for Neurological Classification of SCI exams to forecast 6-month recovery of segmental motor scores as the primary evaluation endpoint. Secondary endpoints included severity grade improvement, independent walking, and self-care ability. Different similarity metrics were explored for k-nearest neighbor (kNN) matching within 1267 patients from the European Multicenter Study about Spinal Cord Injury before validation in 411 patients from the Sygen trial. The kNN performance was compared to linear and logistic regression models. We obtained a population-wide root-mean-squared error (RMSE) in motor score sequence of 0.76(0.14, 2.77) and competitive functional score predictions (AUCwalker = 0.92, AUCself-carer = 0.83) for the kNN algorithm, improving beyond the linear regression task (RMSElinear = 0.98(0.22, 2.57)). The validation cohort showed comparable results (RMSE = 0.75(0.13, 2.57), AUCwalker = 0.92). We deploy the final historic control model as a web tool for easy user interaction (https://hicsci.ethz.ch/). Our approach is the first to provide predictions across all motor segments independent of the level and severity of SCI. We provide a machine learning concept that is highly interpretable, i.e. the prediction formation process is transparent, that has been validated across European and American data sets, and provides reliable and validated algorithms to incorporate external control data to increase sensitivity and feasibility of multinational clinical trials. •Accurate recovery predictions at the level of segmental motor scores.•Historical twins by kNN regression as interpretable, data-driven recovery prediction.•Neurological and functional recovery is addressed by kNN regression.•RMSE below the NLI is a suitable metric to score segmental motor score predictions.•Uncertainties of the ISCNCSCI assessments accounted for using resampling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39097076</pmid><doi>10.1016/j.expneurol.2024.114905</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4886
ispartof Experimental neurology, 2024-10, Vol.380, p.114905, Article 114905
issn 0014-4886
1090-2430
1090-2430
language eng
recordid cdi_proquest_miscellaneous_3087698129
source ScienceDirect Journals
subjects Adult
Aged
Female
Humans
K-nearest neighbor
kNN
Machine learning
Male
Middle Aged
Predictive Value of Tests
Recovery of Function - physiology
Recovery prediction
Segmental motor scores
Spinal Cord Injuries - diagnosis
Spinal Cord Injuries - physiopathology
Spinal Cord Injuries - rehabilitation
Spinal cord injury
Young Adult
title Prediction of segmental motor outcomes in traumatic spinal cord injury: Advances beyond sum scores
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20segmental%20motor%20outcomes%20in%20traumatic%20spinal%20cord%20injury:%20Advances%20beyond%20sum%20scores&rft.jtitle=Experimental%20neurology&rft.au=Br%C3%BCningk,%20Sarah%20C.&rft.aucorp=EMSCI%20study%20group&rft.date=2024-10&rft.volume=380&rft.spage=114905&rft.pages=114905-&rft.artnum=114905&rft.issn=0014-4886&rft.eissn=1090-2430&rft_id=info:doi/10.1016/j.expneurol.2024.114905&rft_dat=%3Cproquest_cross%3E3087698129%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-ecbbc55c2713421320aac3511c88ac873b567d36c9e6acc52ec1b71c787caebe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3087698129&rft_id=info:pmid/39097076&rfr_iscdi=true