Loading…
Deep learning approaches for the detection of scar presence from cine cardiac magnetic resonance adding derived parametric images
This work proposes a convolutional neural network (CNN) that utilizes different combinations of parametric images computed from cine cardiac magnetic resonance (CMR) images, to classify each slice for possible myocardial scar tissue presence. The CNN performance comparison in respect to expert inter...
Saved in:
Published in: | Medical & biological engineering & computing 2024-08 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work proposes a convolutional neural network (CNN) that utilizes different combinations of parametric images computed from cine cardiac magnetic resonance (CMR) images, to classify each slice for possible myocardial scar tissue presence. The CNN performance comparison in respect to expert interpretation of CMR with late gadolinium enhancement (LGE) images, used as ground truth (GT), was conducted on 206 patients (158 scar, 48 control) from Centro Cardiologico Monzino (Milan, Italy) at both slice- and patient-levels. Left ventricle dynamic features were extracted in non-enhanced cine images using parametric images based on both Fourier and monogenic signal analyses. The CNN, fed with cine images and Fourier-based parametric images, achieved an area under the ROC curve of 0.86 (accuracy 0.79, F1 0.81, sensitivity 0.9, specificity 0.65, and negative (NPV) and positive (PPV) predictive values 0.83 and 0.77, respectively), for individual slice classification. Remarkably, it exhibited 1.0 prediction accuracy (F1 0.98, sensitivity 1.0, specificity 0.9, NPV 1.0, and PPV 0.97) in patient classification as a control or pathologic. The proposed approach represents a first step towards scar detection in contrast-free CMR images. Patient-level results suggest its preliminary potential as a screening tool to guide decisions regarding LGE-CMR prescription, particularly in cases where indication is uncertain. |
---|---|
ISSN: | 0140-0118 1741-0444 1741-0444 |
DOI: | 10.1007/s11517-024-03175-z |