Loading…
Kobresia humilis via root-released flavonoids recruit Bacillus for promoted growth
Alpine meadows, which are critical for biodiversity and ecosystem services, are increasingly degrading, necessitating effective restoration strategies. This study explored the mechanism by which Kobresia humilis, an alpine meadow-constructive species, modulates the rhizosphere microbiome via root ex...
Saved in:
Published in: | Microbiological research 2024-10, Vol.287, p.127866, Article 127866 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alpine meadows, which are critical for biodiversity and ecosystem services, are increasingly degrading, necessitating effective restoration strategies. This study explored the mechanism by which Kobresia humilis, an alpine meadow-constructive species, modulates the rhizosphere microbiome via root exudates to enhance growth. Field investigations revealed that the plant height of K. humilis in a severely degraded (SD) alpine meadow was significantly higher than that in other K. humilis populations. Consequently, we analysed the differences between this plot and other K. humilis samples with different degrees of degradation to explore the reasons underlying the phenotypic differences in K. humilis. 16 S rRNA amplicon sequencing results showed that the SD plots were significantly enriched with more Bacillus, altering the composition of the rhizosphere microbial community of K. humilis. The collection and analysis of root exudates from various K. humilis locations revealed distinct differences. Procrustes analysis indicated a strong correlation between the root exudates and the rhizosphere microbiome composition of K. humilis. Model-based integration of metabolite observations, species abundance 2 (MIMOSA2), and Spearman's rank correlation coefficient analysis were used to identify the root exudates potentially related to the enrichment and recruitment of Bacillus. Bacillus from SD samples was isolated and screened, and the representative strain D334 was found to be differentially enriched compared to other samples. A series of in vitro experiments with the screened root exudates and strain D334 demonstrated that K. humilis could recruit Bacillus and promote its colonisation by releasing flavonoids, particularly baicalin. Additionally, K. humilis can release sucrose and riboflavin, which promote strain growth. Finally, soil microbiome transplantation experiments confirmed that different K. humilis phenotypes were closely related to the functions of the rhizosphere microbiome, especially in root morphological shaping. Moreover, the effects of Bacillus inoculation and the microbiome on the plant phenotypes were consistent. In summary, this study revealed a new mechanism by which K. humilis recruits rhizosphere growth-promoting bacteria and enhances soil nutrient utilisation, thereby promoting plant growth. These findings provide a theoretical basis for ecological restoration using soil microbial communities and clarify the relationship between plant metabolites a |
---|---|
ISSN: | 0944-5013 1618-0623 1618-0623 |
DOI: | 10.1016/j.micres.2024.127866 |