Loading…
Calcium-Based Imaging of the Spine at Dual-Layer CT and Evaluation of Vertebral Fractures in Multiple Myeloma
To evaluate the prediction of vertebral fractures in plasma cell dyscrasias using dual-layer CT (DLCT) with quantitative assessment of conventional CT image data (CI), calcium suppressed image data (CaSupp), and calculation of virtual calcium-only (VCa) image data. Patients ( = 81) with the diagnosi...
Saved in:
Published in: | Cancers 2024-08, Vol.16 (15), p.2688 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To evaluate the prediction of vertebral fractures in plasma cell dyscrasias using dual-layer CT (DLCT) with quantitative assessment of conventional CT image data (CI), calcium suppressed image data (CaSupp), and calculation of virtual calcium-only (VCa) image data.
Patients (
= 81) with the diagnosis of a plasma cell dyscrasia and whole-body DLCT at the time of diagnosis and follow-up were retrospectively enrolled. CI, CaSupp25, and CaSupp100 were quantitatively analyzed using regions of interest in the lumbar vertebral bodies and fractured vertebral bodies on baseline or follow-up imaging. VCa were calculated by subtraction (CaSupp100-CaSupp25), delineating bone only. Logistic regression analyses were performed to assess the possibility of imminent spine fractures.
In 24 patients, new vertebral fractures were observed in the follow-up imaging. The possibility of new vertebral fractures was significant for baseline assessment of CT numbers in CI, CaSupp25, and VCa (
= 0.01, respectively), with a higher risk for new fractures in the case of lower CT numbers in CI (Odds ratio = [0.969; 0.994]) and VCa (Odds ratio = [0.978; 0.995]) and in the case of higher CT numbers in CaSupp 25 (Odds ratio 1.015 [1.006; 1.026]). Direct model comparisons implied that CT numbers in CaSupp 25 and VCa might show better fracture prediction than those in CI (R
= 0.18 both vs. 0.15; AICc = 91.95, 91.79 vs. 93.62), suggesting cut-off values for CI at 103 HU (sensitivity: 54.2%; specificity: 82.5; AUC: 0.69), for VCa at 129 HU (sensitivity: 41.7%; specificity: 94.7; AUC: 0.72).
Quantitative assessment with CaSupp and calculation of VCa is feasible to predict the vertebral fracture risk in MM patients. DLCT may prove useful in detecting imminent fractures. |
---|---|
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers16152688 |