Loading…

Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures

This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the t...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-07, Vol.16 (15), p.2138
Main Authors: Pivar, Matej, Vrabič-Brodnjak, Urška, Leskovšek, Mirjam, Gregor-Svetec, Diana, Muck, Deja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183
container_end_page
container_issue 15
container_start_page 2138
container_title Polymers
container_volume 16
creator Pivar, Matej
Vrabič-Brodnjak, Urška
Leskovšek, Mirjam
Gregor-Svetec, Diana
Muck, Deja
description This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation.
doi_str_mv 10.3390/polym16152138
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3091286707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804516258</galeid><sourcerecordid>A804516258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183</originalsourceid><addsrcrecordid>eNpdkc1PHSEUxYmpUfN06daQuOlmLHCHj3Fnnv0w0dik7XrCzDBPDAMjMIv335eXp8YWFlzI71xOzkXonJIrgIZ8mYPbTlRQziioA3TCiISqBkE-faiP0VlKz6SsmgtB5RE6hoYyTkV9gpYHnU202uF1mGadbWedzVtsPa5v8c9ofbZ-c43vBlOqcVsuOD8Z_DhnO-1VnfVFFzweQyyKsIl6mnTnDH5YXLbV-w-_clz6vESTTtHhqF0yZ6_nCv359vX3-kd1__j9bn1zX_VM8Vw1Qg0SlIJGNlTJkbCGG9bDMEilodZApSC06YQmsmM9JwSY0p2STCrOqYIV-rzvO8fwspiU28mm3jinvQlLaoGUIJSQJaoVuvwPfQ5L9MXdjiINEJCiUFd7aqOdaa0fQ466L3swk-2DN6Mt7zeqRE0F4zsH1V7Qx5BSNGM7xxJc3LaUtLsZtv_MsPAXrzaWbjLDO_02MfgLCS2WLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090930376</pqid></control><display><type>article</type><title>Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Pivar, Matej ; Vrabič-Brodnjak, Urška ; Leskovšek, Mirjam ; Gregor-Svetec, Diana ; Muck, Deja</creator><creatorcontrib>Pivar, Matej ; Vrabič-Brodnjak, Urška ; Leskovšek, Mirjam ; Gregor-Svetec, Diana ; Muck, Deja</creatorcontrib><description>This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16152138</identifier><identifier>PMID: 39125164</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; ABS resins ; Additive manufacturing ; Dimensional stability ; Effectiveness ; Flexibility ; Hangers ; Humidity ; Mechanical properties ; Passive components ; Polyethylene terephthalate ; Polylactic acid ; Polyvinyl alcohol ; Printed materials ; Production methods ; Radius of curvature ; Robotics ; Shear strength ; Storage modulus ; Temperature ; Thermomechanical properties ; Thermoplastics ; Three dimensional printing ; Urethane thermoplastic elastomers</subject><ispartof>Polymers, 2024-07, Vol.16 (15), p.2138</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183</cites><orcidid>0000-0001-5145-0499 ; 0000-0002-8503-8782 ; 0000-0001-7994-6963 ; 0000-0003-0865-8619 ; 0000-0003-4564-5411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090930376/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090930376?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39125164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pivar, Matej</creatorcontrib><creatorcontrib>Vrabič-Brodnjak, Urška</creatorcontrib><creatorcontrib>Leskovšek, Mirjam</creatorcontrib><creatorcontrib>Gregor-Svetec, Diana</creatorcontrib><creatorcontrib>Muck, Deja</creatorcontrib><title>Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>ABS resins</subject><subject>Additive manufacturing</subject><subject>Dimensional stability</subject><subject>Effectiveness</subject><subject>Flexibility</subject><subject>Hangers</subject><subject>Humidity</subject><subject>Mechanical properties</subject><subject>Passive components</subject><subject>Polyethylene terephthalate</subject><subject>Polylactic acid</subject><subject>Polyvinyl alcohol</subject><subject>Printed materials</subject><subject>Production methods</subject><subject>Radius of curvature</subject><subject>Robotics</subject><subject>Shear strength</subject><subject>Storage modulus</subject><subject>Temperature</subject><subject>Thermomechanical properties</subject><subject>Thermoplastics</subject><subject>Three dimensional printing</subject><subject>Urethane thermoplastic elastomers</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1PHSEUxYmpUfN06daQuOlmLHCHj3Fnnv0w0dik7XrCzDBPDAMjMIv335eXp8YWFlzI71xOzkXonJIrgIZ8mYPbTlRQziioA3TCiISqBkE-faiP0VlKz6SsmgtB5RE6hoYyTkV9gpYHnU202uF1mGadbWedzVtsPa5v8c9ofbZ-c43vBlOqcVsuOD8Z_DhnO-1VnfVFFzweQyyKsIl6mnTnDH5YXLbV-w-_clz6vESTTtHhqF0yZ6_nCv359vX3-kd1__j9bn1zX_VM8Vw1Qg0SlIJGNlTJkbCGG9bDMEilodZApSC06YQmsmM9JwSY0p2STCrOqYIV-rzvO8fwspiU28mm3jinvQlLaoGUIJSQJaoVuvwPfQ5L9MXdjiINEJCiUFd7aqOdaa0fQ466L3swk-2DN6Mt7zeqRE0F4zsH1V7Qx5BSNGM7xxJc3LaUtLsZtv_MsPAXrzaWbjLDO_02MfgLCS2WLA</recordid><startdate>20240727</startdate><enddate>20240727</enddate><creator>Pivar, Matej</creator><creator>Vrabič-Brodnjak, Urška</creator><creator>Leskovšek, Mirjam</creator><creator>Gregor-Svetec, Diana</creator><creator>Muck, Deja</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5145-0499</orcidid><orcidid>https://orcid.org/0000-0002-8503-8782</orcidid><orcidid>https://orcid.org/0000-0001-7994-6963</orcidid><orcidid>https://orcid.org/0000-0003-0865-8619</orcidid><orcidid>https://orcid.org/0000-0003-4564-5411</orcidid></search><sort><creationdate>20240727</creationdate><title>Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures</title><author>Pivar, Matej ; Vrabič-Brodnjak, Urška ; Leskovšek, Mirjam ; Gregor-Svetec, Diana ; Muck, Deja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>ABS resins</topic><topic>Additive manufacturing</topic><topic>Dimensional stability</topic><topic>Effectiveness</topic><topic>Flexibility</topic><topic>Hangers</topic><topic>Humidity</topic><topic>Mechanical properties</topic><topic>Passive components</topic><topic>Polyethylene terephthalate</topic><topic>Polylactic acid</topic><topic>Polyvinyl alcohol</topic><topic>Printed materials</topic><topic>Production methods</topic><topic>Radius of curvature</topic><topic>Robotics</topic><topic>Shear strength</topic><topic>Storage modulus</topic><topic>Temperature</topic><topic>Thermomechanical properties</topic><topic>Thermoplastics</topic><topic>Three dimensional printing</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pivar, Matej</creatorcontrib><creatorcontrib>Vrabič-Brodnjak, Urška</creatorcontrib><creatorcontrib>Leskovšek, Mirjam</creatorcontrib><creatorcontrib>Gregor-Svetec, Diana</creatorcontrib><creatorcontrib>Muck, Deja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pivar, Matej</au><au>Vrabič-Brodnjak, Urška</au><au>Leskovšek, Mirjam</au><au>Gregor-Svetec, Diana</au><au>Muck, Deja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-07-27</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>2138</spage><pages>2138-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39125164</pmid><doi>10.3390/polym16152138</doi><orcidid>https://orcid.org/0000-0001-5145-0499</orcidid><orcidid>https://orcid.org/0000-0002-8503-8782</orcidid><orcidid>https://orcid.org/0000-0001-7994-6963</orcidid><orcidid>https://orcid.org/0000-0003-0865-8619</orcidid><orcidid>https://orcid.org/0000-0003-4564-5411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-07, Vol.16 (15), p.2138
issn 2073-4360
2073-4360
language eng
recordid cdi_proquest_miscellaneous_3091286707
source PubMed (Medline); Publicly Available Content Database
subjects 3-D printers
3D printing
ABS resins
Additive manufacturing
Dimensional stability
Effectiveness
Flexibility
Hangers
Humidity
Mechanical properties
Passive components
Polyethylene terephthalate
Polylactic acid
Polyvinyl alcohol
Printed materials
Production methods
Radius of curvature
Robotics
Shear strength
Storage modulus
Temperature
Thermomechanical properties
Thermoplastics
Three dimensional printing
Urethane thermoplastic elastomers
title Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20Compatibility%20in%204D%20Printing:%20Identifying%20the%20Optimal%20Combination%20for%20Programmable%20Multi-Material%20Structures&rft.jtitle=Polymers&rft.au=Pivar,%20Matej&rft.date=2024-07-27&rft.volume=16&rft.issue=15&rft.spage=2138&rft.pages=2138-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16152138&rft_dat=%3Cgale_proqu%3EA804516258%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090930376&rft_id=info:pmid/39125164&rft_galeid=A804516258&rfr_iscdi=true