Loading…
Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures
This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the t...
Saved in:
Published in: | Polymers 2024-07, Vol.16 (15), p.2138 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183 |
container_end_page | |
container_issue | 15 |
container_start_page | 2138 |
container_title | Polymers |
container_volume | 16 |
creator | Pivar, Matej Vrabič-Brodnjak, Urška Leskovšek, Mirjam Gregor-Svetec, Diana Muck, Deja |
description | This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation. |
doi_str_mv | 10.3390/polym16152138 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3091286707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804516258</galeid><sourcerecordid>A804516258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183</originalsourceid><addsrcrecordid>eNpdkc1PHSEUxYmpUfN06daQuOlmLHCHj3Fnnv0w0dik7XrCzDBPDAMjMIv335eXp8YWFlzI71xOzkXonJIrgIZ8mYPbTlRQziioA3TCiISqBkE-faiP0VlKz6SsmgtB5RE6hoYyTkV9gpYHnU202uF1mGadbWedzVtsPa5v8c9ofbZ-c43vBlOqcVsuOD8Z_DhnO-1VnfVFFzweQyyKsIl6mnTnDH5YXLbV-w-_clz6vESTTtHhqF0yZ6_nCv359vX3-kd1__j9bn1zX_VM8Vw1Qg0SlIJGNlTJkbCGG9bDMEilodZApSC06YQmsmM9JwSY0p2STCrOqYIV-rzvO8fwspiU28mm3jinvQlLaoGUIJSQJaoVuvwPfQ5L9MXdjiINEJCiUFd7aqOdaa0fQ466L3swk-2DN6Mt7zeqRE0F4zsH1V7Qx5BSNGM7xxJc3LaUtLsZtv_MsPAXrzaWbjLDO_02MfgLCS2WLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090930376</pqid></control><display><type>article</type><title>Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Pivar, Matej ; Vrabič-Brodnjak, Urška ; Leskovšek, Mirjam ; Gregor-Svetec, Diana ; Muck, Deja</creator><creatorcontrib>Pivar, Matej ; Vrabič-Brodnjak, Urška ; Leskovšek, Mirjam ; Gregor-Svetec, Diana ; Muck, Deja</creatorcontrib><description>This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16152138</identifier><identifier>PMID: 39125164</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; ABS resins ; Additive manufacturing ; Dimensional stability ; Effectiveness ; Flexibility ; Hangers ; Humidity ; Mechanical properties ; Passive components ; Polyethylene terephthalate ; Polylactic acid ; Polyvinyl alcohol ; Printed materials ; Production methods ; Radius of curvature ; Robotics ; Shear strength ; Storage modulus ; Temperature ; Thermomechanical properties ; Thermoplastics ; Three dimensional printing ; Urethane thermoplastic elastomers</subject><ispartof>Polymers, 2024-07, Vol.16 (15), p.2138</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183</cites><orcidid>0000-0001-5145-0499 ; 0000-0002-8503-8782 ; 0000-0001-7994-6963 ; 0000-0003-0865-8619 ; 0000-0003-4564-5411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3090930376/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3090930376?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39125164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pivar, Matej</creatorcontrib><creatorcontrib>Vrabič-Brodnjak, Urška</creatorcontrib><creatorcontrib>Leskovšek, Mirjam</creatorcontrib><creatorcontrib>Gregor-Svetec, Diana</creatorcontrib><creatorcontrib>Muck, Deja</creatorcontrib><title>Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>ABS resins</subject><subject>Additive manufacturing</subject><subject>Dimensional stability</subject><subject>Effectiveness</subject><subject>Flexibility</subject><subject>Hangers</subject><subject>Humidity</subject><subject>Mechanical properties</subject><subject>Passive components</subject><subject>Polyethylene terephthalate</subject><subject>Polylactic acid</subject><subject>Polyvinyl alcohol</subject><subject>Printed materials</subject><subject>Production methods</subject><subject>Radius of curvature</subject><subject>Robotics</subject><subject>Shear strength</subject><subject>Storage modulus</subject><subject>Temperature</subject><subject>Thermomechanical properties</subject><subject>Thermoplastics</subject><subject>Three dimensional printing</subject><subject>Urethane thermoplastic elastomers</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1PHSEUxYmpUfN06daQuOlmLHCHj3Fnnv0w0dik7XrCzDBPDAMjMIv335eXp8YWFlzI71xOzkXonJIrgIZ8mYPbTlRQziioA3TCiISqBkE-faiP0VlKz6SsmgtB5RE6hoYyTkV9gpYHnU202uF1mGadbWedzVtsPa5v8c9ofbZ-c43vBlOqcVsuOD8Z_DhnO-1VnfVFFzweQyyKsIl6mnTnDH5YXLbV-w-_clz6vESTTtHhqF0yZ6_nCv359vX3-kd1__j9bn1zX_VM8Vw1Qg0SlIJGNlTJkbCGG9bDMEilodZApSC06YQmsmM9JwSY0p2STCrOqYIV-rzvO8fwspiU28mm3jinvQlLaoGUIJSQJaoVuvwPfQ5L9MXdjiINEJCiUFd7aqOdaa0fQ466L3swk-2DN6Mt7zeqRE0F4zsH1V7Qx5BSNGM7xxJc3LaUtLsZtv_MsPAXrzaWbjLDO_02MfgLCS2WLA</recordid><startdate>20240727</startdate><enddate>20240727</enddate><creator>Pivar, Matej</creator><creator>Vrabič-Brodnjak, Urška</creator><creator>Leskovšek, Mirjam</creator><creator>Gregor-Svetec, Diana</creator><creator>Muck, Deja</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5145-0499</orcidid><orcidid>https://orcid.org/0000-0002-8503-8782</orcidid><orcidid>https://orcid.org/0000-0001-7994-6963</orcidid><orcidid>https://orcid.org/0000-0003-0865-8619</orcidid><orcidid>https://orcid.org/0000-0003-4564-5411</orcidid></search><sort><creationdate>20240727</creationdate><title>Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures</title><author>Pivar, Matej ; Vrabič-Brodnjak, Urška ; Leskovšek, Mirjam ; Gregor-Svetec, Diana ; Muck, Deja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>ABS resins</topic><topic>Additive manufacturing</topic><topic>Dimensional stability</topic><topic>Effectiveness</topic><topic>Flexibility</topic><topic>Hangers</topic><topic>Humidity</topic><topic>Mechanical properties</topic><topic>Passive components</topic><topic>Polyethylene terephthalate</topic><topic>Polylactic acid</topic><topic>Polyvinyl alcohol</topic><topic>Printed materials</topic><topic>Production methods</topic><topic>Radius of curvature</topic><topic>Robotics</topic><topic>Shear strength</topic><topic>Storage modulus</topic><topic>Temperature</topic><topic>Thermomechanical properties</topic><topic>Thermoplastics</topic><topic>Three dimensional printing</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pivar, Matej</creatorcontrib><creatorcontrib>Vrabič-Brodnjak, Urška</creatorcontrib><creatorcontrib>Leskovšek, Mirjam</creatorcontrib><creatorcontrib>Gregor-Svetec, Diana</creatorcontrib><creatorcontrib>Muck, Deja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pivar, Matej</au><au>Vrabič-Brodnjak, Urška</au><au>Leskovšek, Mirjam</au><au>Gregor-Svetec, Diana</au><au>Muck, Deja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-07-27</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>2138</spage><pages>2138-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This study identifies the optimal combination of active and passive thermoplastic materials for producing multi-material programmable 3D structures. These structures can undergo shape changes with varying radii of curvature over time when exposed to hot water. The research focuses on examining the thermal, thermomechanical, and mechanical properties of active (PLA) and passive (PRO-PLA, ABS, and TPU) materials. It also includes the experimental determination of the radius of curvature of the programmed 3D structures. The pairing of active PLA with passive PRO-PLA was found to be the most effective for creating complex programmable 3D structures capable of two-sided transformation. This efficacy is attributed to the adequate apparent shear strength, significant differences in thermomechanical shrinkage between the two materials, identical printing parameters for both materials, and the lowest bending storage modulus of PRO-PLA among the passive materials within the activation temperature range. Multi-material 3D printing has also proven to be a suitable method for producing programmable 3D structures for practical applications such as phone stands, phone cases, door hangers, etc. It facilitates the programming of the active material and ensures the dimensional stability of the passive components of programmable 3D structures during thermal activation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39125164</pmid><doi>10.3390/polym16152138</doi><orcidid>https://orcid.org/0000-0001-5145-0499</orcidid><orcidid>https://orcid.org/0000-0002-8503-8782</orcidid><orcidid>https://orcid.org/0000-0001-7994-6963</orcidid><orcidid>https://orcid.org/0000-0003-0865-8619</orcidid><orcidid>https://orcid.org/0000-0003-4564-5411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-07, Vol.16 (15), p.2138 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_3091286707 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | 3-D printers 3D printing ABS resins Additive manufacturing Dimensional stability Effectiveness Flexibility Hangers Humidity Mechanical properties Passive components Polyethylene terephthalate Polylactic acid Polyvinyl alcohol Printed materials Production methods Radius of curvature Robotics Shear strength Storage modulus Temperature Thermomechanical properties Thermoplastics Three dimensional printing Urethane thermoplastic elastomers |
title | Material Compatibility in 4D Printing: Identifying the Optimal Combination for Programmable Multi-Material Structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20Compatibility%20in%204D%20Printing:%20Identifying%20the%20Optimal%20Combination%20for%20Programmable%20Multi-Material%20Structures&rft.jtitle=Polymers&rft.au=Pivar,%20Matej&rft.date=2024-07-27&rft.volume=16&rft.issue=15&rft.spage=2138&rft.pages=2138-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16152138&rft_dat=%3Cgale_proqu%3EA804516258%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-968d73883979187f0295e2c3dd78a34a3176019b6a07b2c500328ab8727855183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3090930376&rft_id=info:pmid/39125164&rft_galeid=A804516258&rfr_iscdi=true |