Loading…

Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification

The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-p...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2024-08, Vol.15 (33), p.8501-8509
Main Authors: Jiang, Sai, Sun, Jinrui, Pei, Mengjiao, Peng, Lichao, Dai, Qinyong, Wu, Chaoran, Gu, Jiahao, Yang, Yanqin, Su, Jian, Gu, Ding, Zhang, Han, Guo, Huafei, Li, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963
container_end_page 8509
container_issue 33
container_start_page 8501
container_title The journal of physical chemistry letters
container_volume 15
creator Jiang, Sai
Sun, Jinrui
Pei, Mengjiao
Peng, Lichao
Dai, Qinyong
Wu, Chaoran
Gu, Jiahao
Yang, Yanqin
Su, Jian
Gu, Ding
Zhang, Han
Guo, Huafei
Li, Yun
description The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-processed memcapacitive reservoirs have the potential to improve power efficiency as a result of their ultralow static power consumption, further advancements in synaptic tunability and reservoir states are imperative to enhance the capabilities of RC systems. This work presents solution-processed electrolyte/ferroelectric memcapacitive synapses. Leveraging the synergistic coupling of electrical double-layer (EDL) effects and ferroelectric polarization, these synapses exhibit tunable long- and short-term plasticity, ultralow power consumption (∼27 fJ per spike), and rich reservoir state dynamics, making them well-suited for energy-efficient RC systems. The classifications of critical electrocardiogram (ECG) signals, including arrhythmia and obstructive sleep apnea (OSA), are performed using the synapse-based RC system, demonstrating excellent accuracies of 97.8 and 80.0% for arrhythmia and OSA classifications, respectively. These findings pave the way for developing lightweight, energy-efficient machine-learning platforms for biosignal classification in wearable devices.
doi_str_mv 10.1021/acs.jpclett.4c01896
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3092365434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092365434</sourcerecordid><originalsourceid>FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCIlsIvQEI-csmuHXsT50hXW0AqAlE4RxNnvHLlxMHjVNo_0d9MtrsgTpxm9PQ-pPcYeyvFSopSrsHS6n6yAXNeaSukaapn7FI22hS1NJvn__wX7BXRvRBVI0z9kl2oRipVm-qSPe5GTPtDsXPOW49j5t-RMD1En_g2DtOc_bjn10DY8zjyuxgWJI7FtxQt0hHdBbQ5xXDIuL7BlCI-Ad7yLzhYmMD67B-Q3x1GmAiJu5j4tY_k9yMEvg1A5JdwOPq-Zi8cBMI353vFft7sfmw_FbdfP37efrgtoCw3udCykX3Z2x6cAwTbKVupzinstIFOYa1BGmlq11fKuX5jlDPW9qitFuXSk7pi70--U4q_ZqTcDp4shgAjxplaJZpSVRut9EJVJ6pNkSiha6fkB0iHVor2OES7DNGeh2jPQyyqd-eAuRuw_6v50_xCWJ8IT-o4p6UM-q_lbxuonOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092365434</pqid></control><display><type>article</type><title>Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Jiang, Sai ; Sun, Jinrui ; Pei, Mengjiao ; Peng, Lichao ; Dai, Qinyong ; Wu, Chaoran ; Gu, Jiahao ; Yang, Yanqin ; Su, Jian ; Gu, Ding ; Zhang, Han ; Guo, Huafei ; Li, Yun</creator><creatorcontrib>Jiang, Sai ; Sun, Jinrui ; Pei, Mengjiao ; Peng, Lichao ; Dai, Qinyong ; Wu, Chaoran ; Gu, Jiahao ; Yang, Yanqin ; Su, Jian ; Gu, Ding ; Zhang, Han ; Guo, Huafei ; Li, Yun</creatorcontrib><description>The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-processed memcapacitive reservoirs have the potential to improve power efficiency as a result of their ultralow static power consumption, further advancements in synaptic tunability and reservoir states are imperative to enhance the capabilities of RC systems. This work presents solution-processed electrolyte/ferroelectric memcapacitive synapses. Leveraging the synergistic coupling of electrical double-layer (EDL) effects and ferroelectric polarization, these synapses exhibit tunable long- and short-term plasticity, ultralow power consumption (∼27 fJ per spike), and rich reservoir state dynamics, making them well-suited for energy-efficient RC systems. The classifications of critical electrocardiogram (ECG) signals, including arrhythmia and obstructive sleep apnea (OSA), are performed using the synapse-based RC system, demonstrating excellent accuracies of 97.8 and 80.0% for arrhythmia and OSA classifications, respectively. These findings pave the way for developing lightweight, energy-efficient machine-learning platforms for biosignal classification in wearable devices.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.4c01896</identifier><identifier>PMID: 39133786</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2024-08, Vol.15 (33), p.8501-8509</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963</cites><orcidid>0000-0003-1753-7317 ; 0000-0002-9398-1105 ; 0000-0002-8402-7539 ; 0000-0002-0785-6528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39133786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Sai</creatorcontrib><creatorcontrib>Sun, Jinrui</creatorcontrib><creatorcontrib>Pei, Mengjiao</creatorcontrib><creatorcontrib>Peng, Lichao</creatorcontrib><creatorcontrib>Dai, Qinyong</creatorcontrib><creatorcontrib>Wu, Chaoran</creatorcontrib><creatorcontrib>Gu, Jiahao</creatorcontrib><creatorcontrib>Yang, Yanqin</creatorcontrib><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Gu, Ding</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Guo, Huafei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><title>Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-processed memcapacitive reservoirs have the potential to improve power efficiency as a result of their ultralow static power consumption, further advancements in synaptic tunability and reservoir states are imperative to enhance the capabilities of RC systems. This work presents solution-processed electrolyte/ferroelectric memcapacitive synapses. Leveraging the synergistic coupling of electrical double-layer (EDL) effects and ferroelectric polarization, these synapses exhibit tunable long- and short-term plasticity, ultralow power consumption (∼27 fJ per spike), and rich reservoir state dynamics, making them well-suited for energy-efficient RC systems. The classifications of critical electrocardiogram (ECG) signals, including arrhythmia and obstructive sleep apnea (OSA), are performed using the synapse-based RC system, demonstrating excellent accuracies of 97.8 and 80.0% for arrhythmia and OSA classifications, respectively. These findings pave the way for developing lightweight, energy-efficient machine-learning platforms for biosignal classification in wearable devices.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQtRCIlsIvQEI-csmuHXsT50hXW0AqAlE4RxNnvHLlxMHjVNo_0d9MtrsgTpxm9PQ-pPcYeyvFSopSrsHS6n6yAXNeaSukaapn7FI22hS1NJvn__wX7BXRvRBVI0z9kl2oRipVm-qSPe5GTPtDsXPOW49j5t-RMD1En_g2DtOc_bjn10DY8zjyuxgWJI7FtxQt0hHdBbQ5xXDIuL7BlCI-Ad7yLzhYmMD67B-Q3x1GmAiJu5j4tY_k9yMEvg1A5JdwOPq-Zi8cBMI353vFft7sfmw_FbdfP37efrgtoCw3udCykX3Z2x6cAwTbKVupzinstIFOYa1BGmlq11fKuX5jlDPW9qitFuXSk7pi70--U4q_ZqTcDp4shgAjxplaJZpSVRut9EJVJ6pNkSiha6fkB0iHVor2OES7DNGeh2jPQyyqd-eAuRuw_6v50_xCWJ8IT-o4p6UM-q_lbxuonOc</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Jiang, Sai</creator><creator>Sun, Jinrui</creator><creator>Pei, Mengjiao</creator><creator>Peng, Lichao</creator><creator>Dai, Qinyong</creator><creator>Wu, Chaoran</creator><creator>Gu, Jiahao</creator><creator>Yang, Yanqin</creator><creator>Su, Jian</creator><creator>Gu, Ding</creator><creator>Zhang, Han</creator><creator>Guo, Huafei</creator><creator>Li, Yun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1753-7317</orcidid><orcidid>https://orcid.org/0000-0002-9398-1105</orcidid><orcidid>https://orcid.org/0000-0002-8402-7539</orcidid><orcidid>https://orcid.org/0000-0002-0785-6528</orcidid></search><sort><creationdate>20240822</creationdate><title>Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification</title><author>Jiang, Sai ; Sun, Jinrui ; Pei, Mengjiao ; Peng, Lichao ; Dai, Qinyong ; Wu, Chaoran ; Gu, Jiahao ; Yang, Yanqin ; Su, Jian ; Gu, Ding ; Zhang, Han ; Guo, Huafei ; Li, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Sai</creatorcontrib><creatorcontrib>Sun, Jinrui</creatorcontrib><creatorcontrib>Pei, Mengjiao</creatorcontrib><creatorcontrib>Peng, Lichao</creatorcontrib><creatorcontrib>Dai, Qinyong</creatorcontrib><creatorcontrib>Wu, Chaoran</creatorcontrib><creatorcontrib>Gu, Jiahao</creatorcontrib><creatorcontrib>Yang, Yanqin</creatorcontrib><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Gu, Ding</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Guo, Huafei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Sai</au><au>Sun, Jinrui</au><au>Pei, Mengjiao</au><au>Peng, Lichao</au><au>Dai, Qinyong</au><au>Wu, Chaoran</au><au>Gu, Jiahao</au><au>Yang, Yanqin</au><au>Su, Jian</au><au>Gu, Ding</au><au>Zhang, Han</au><au>Guo, Huafei</au><au>Li, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>15</volume><issue>33</issue><spage>8501</spage><epage>8509</epage><pages>8501-8509</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-processed memcapacitive reservoirs have the potential to improve power efficiency as a result of their ultralow static power consumption, further advancements in synaptic tunability and reservoir states are imperative to enhance the capabilities of RC systems. This work presents solution-processed electrolyte/ferroelectric memcapacitive synapses. Leveraging the synergistic coupling of electrical double-layer (EDL) effects and ferroelectric polarization, these synapses exhibit tunable long- and short-term plasticity, ultralow power consumption (∼27 fJ per spike), and rich reservoir state dynamics, making them well-suited for energy-efficient RC systems. The classifications of critical electrocardiogram (ECG) signals, including arrhythmia and obstructive sleep apnea (OSA), are performed using the synapse-based RC system, demonstrating excellent accuracies of 97.8 and 80.0% for arrhythmia and OSA classifications, respectively. These findings pave the way for developing lightweight, energy-efficient machine-learning platforms for biosignal classification in wearable devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39133786</pmid><doi>10.1021/acs.jpclett.4c01896</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1753-7317</orcidid><orcidid>https://orcid.org/0000-0002-9398-1105</orcidid><orcidid>https://orcid.org/0000-0002-8402-7539</orcidid><orcidid>https://orcid.org/0000-0002-0785-6528</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2024-08, Vol.15 (33), p.8501-8509
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_3092365434
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Physical Insights into Materials and Molecular Properties
title Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Reservoir%20Computing%20Based%20on%20Solution-Processed%20Electrolyte/Ferroelectric%20Memcapacitive%20Synapses%20for%20Biosignal%20Classification&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Jiang,%20Sai&rft.date=2024-08-22&rft.volume=15&rft.issue=33&rft.spage=8501&rft.epage=8509&rft.pages=8501-8509&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.4c01896&rft_dat=%3Cproquest_cross%3E3092365434%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092365434&rft_id=info:pmid/39133786&rfr_iscdi=true