Loading…
Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification
The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-p...
Saved in:
Published in: | The journal of physical chemistry letters 2024-08, Vol.15 (33), p.8501-8509 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963 |
container_end_page | 8509 |
container_issue | 33 |
container_start_page | 8501 |
container_title | The journal of physical chemistry letters |
container_volume | 15 |
creator | Jiang, Sai Sun, Jinrui Pei, Mengjiao Peng, Lichao Dai, Qinyong Wu, Chaoran Gu, Jiahao Yang, Yanqin Su, Jian Gu, Ding Zhang, Han Guo, Huafei Li, Yun |
description | The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-processed memcapacitive reservoirs have the potential to improve power efficiency as a result of their ultralow static power consumption, further advancements in synaptic tunability and reservoir states are imperative to enhance the capabilities of RC systems. This work presents solution-processed electrolyte/ferroelectric memcapacitive synapses. Leveraging the synergistic coupling of electrical double-layer (EDL) effects and ferroelectric polarization, these synapses exhibit tunable long- and short-term plasticity, ultralow power consumption (∼27 fJ per spike), and rich reservoir state dynamics, making them well-suited for energy-efficient RC systems. The classifications of critical electrocardiogram (ECG) signals, including arrhythmia and obstructive sleep apnea (OSA), are performed using the synapse-based RC system, demonstrating excellent accuracies of 97.8 and 80.0% for arrhythmia and OSA classifications, respectively. These findings pave the way for developing lightweight, energy-efficient machine-learning platforms for biosignal classification in wearable devices. |
doi_str_mv | 10.1021/acs.jpclett.4c01896 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3092365434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092365434</sourcerecordid><originalsourceid>FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCIlsIvQEI-csmuHXsT50hXW0AqAlE4RxNnvHLlxMHjVNo_0d9MtrsgTpxm9PQ-pPcYeyvFSopSrsHS6n6yAXNeaSukaapn7FI22hS1NJvn__wX7BXRvRBVI0z9kl2oRipVm-qSPe5GTPtDsXPOW49j5t-RMD1En_g2DtOc_bjn10DY8zjyuxgWJI7FtxQt0hHdBbQ5xXDIuL7BlCI-Ad7yLzhYmMD67B-Q3x1GmAiJu5j4tY_k9yMEvg1A5JdwOPq-Zi8cBMI353vFft7sfmw_FbdfP37efrgtoCw3udCykX3Z2x6cAwTbKVupzinstIFOYa1BGmlq11fKuX5jlDPW9qitFuXSk7pi70--U4q_ZqTcDp4shgAjxplaJZpSVRut9EJVJ6pNkSiha6fkB0iHVor2OES7DNGeh2jPQyyqd-eAuRuw_6v50_xCWJ8IT-o4p6UM-q_lbxuonOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092365434</pqid></control><display><type>article</type><title>Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Jiang, Sai ; Sun, Jinrui ; Pei, Mengjiao ; Peng, Lichao ; Dai, Qinyong ; Wu, Chaoran ; Gu, Jiahao ; Yang, Yanqin ; Su, Jian ; Gu, Ding ; Zhang, Han ; Guo, Huafei ; Li, Yun</creator><creatorcontrib>Jiang, Sai ; Sun, Jinrui ; Pei, Mengjiao ; Peng, Lichao ; Dai, Qinyong ; Wu, Chaoran ; Gu, Jiahao ; Yang, Yanqin ; Su, Jian ; Gu, Ding ; Zhang, Han ; Guo, Huafei ; Li, Yun</creatorcontrib><description>The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-processed memcapacitive reservoirs have the potential to improve power efficiency as a result of their ultralow static power consumption, further advancements in synaptic tunability and reservoir states are imperative to enhance the capabilities of RC systems. This work presents solution-processed electrolyte/ferroelectric memcapacitive synapses. Leveraging the synergistic coupling of electrical double-layer (EDL) effects and ferroelectric polarization, these synapses exhibit tunable long- and short-term plasticity, ultralow power consumption (∼27 fJ per spike), and rich reservoir state dynamics, making them well-suited for energy-efficient RC systems. The classifications of critical electrocardiogram (ECG) signals, including arrhythmia and obstructive sleep apnea (OSA), are performed using the synapse-based RC system, demonstrating excellent accuracies of 97.8 and 80.0% for arrhythmia and OSA classifications, respectively. These findings pave the way for developing lightweight, energy-efficient machine-learning platforms for biosignal classification in wearable devices.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.4c01896</identifier><identifier>PMID: 39133786</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2024-08, Vol.15 (33), p.8501-8509</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963</cites><orcidid>0000-0003-1753-7317 ; 0000-0002-9398-1105 ; 0000-0002-8402-7539 ; 0000-0002-0785-6528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39133786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Sai</creatorcontrib><creatorcontrib>Sun, Jinrui</creatorcontrib><creatorcontrib>Pei, Mengjiao</creatorcontrib><creatorcontrib>Peng, Lichao</creatorcontrib><creatorcontrib>Dai, Qinyong</creatorcontrib><creatorcontrib>Wu, Chaoran</creatorcontrib><creatorcontrib>Gu, Jiahao</creatorcontrib><creatorcontrib>Yang, Yanqin</creatorcontrib><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Gu, Ding</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Guo, Huafei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><title>Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-processed memcapacitive reservoirs have the potential to improve power efficiency as a result of their ultralow static power consumption, further advancements in synaptic tunability and reservoir states are imperative to enhance the capabilities of RC systems. This work presents solution-processed electrolyte/ferroelectric memcapacitive synapses. Leveraging the synergistic coupling of electrical double-layer (EDL) effects and ferroelectric polarization, these synapses exhibit tunable long- and short-term plasticity, ultralow power consumption (∼27 fJ per spike), and rich reservoir state dynamics, making them well-suited for energy-efficient RC systems. The classifications of critical electrocardiogram (ECG) signals, including arrhythmia and obstructive sleep apnea (OSA), are performed using the synapse-based RC system, demonstrating excellent accuracies of 97.8 and 80.0% for arrhythmia and OSA classifications, respectively. These findings pave the way for developing lightweight, energy-efficient machine-learning platforms for biosignal classification in wearable devices.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQtRCIlsIvQEI-csmuHXsT50hXW0AqAlE4RxNnvHLlxMHjVNo_0d9MtrsgTpxm9PQ-pPcYeyvFSopSrsHS6n6yAXNeaSukaapn7FI22hS1NJvn__wX7BXRvRBVI0z9kl2oRipVm-qSPe5GTPtDsXPOW49j5t-RMD1En_g2DtOc_bjn10DY8zjyuxgWJI7FtxQt0hHdBbQ5xXDIuL7BlCI-Ad7yLzhYmMD67B-Q3x1GmAiJu5j4tY_k9yMEvg1A5JdwOPq-Zi8cBMI353vFft7sfmw_FbdfP37efrgtoCw3udCykX3Z2x6cAwTbKVupzinstIFOYa1BGmlq11fKuX5jlDPW9qitFuXSk7pi70--U4q_ZqTcDp4shgAjxplaJZpSVRut9EJVJ6pNkSiha6fkB0iHVor2OES7DNGeh2jPQyyqd-eAuRuw_6v50_xCWJ8IT-o4p6UM-q_lbxuonOc</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Jiang, Sai</creator><creator>Sun, Jinrui</creator><creator>Pei, Mengjiao</creator><creator>Peng, Lichao</creator><creator>Dai, Qinyong</creator><creator>Wu, Chaoran</creator><creator>Gu, Jiahao</creator><creator>Yang, Yanqin</creator><creator>Su, Jian</creator><creator>Gu, Ding</creator><creator>Zhang, Han</creator><creator>Guo, Huafei</creator><creator>Li, Yun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1753-7317</orcidid><orcidid>https://orcid.org/0000-0002-9398-1105</orcidid><orcidid>https://orcid.org/0000-0002-8402-7539</orcidid><orcidid>https://orcid.org/0000-0002-0785-6528</orcidid></search><sort><creationdate>20240822</creationdate><title>Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification</title><author>Jiang, Sai ; Sun, Jinrui ; Pei, Mengjiao ; Peng, Lichao ; Dai, Qinyong ; Wu, Chaoran ; Gu, Jiahao ; Yang, Yanqin ; Su, Jian ; Gu, Ding ; Zhang, Han ; Guo, Huafei ; Li, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Sai</creatorcontrib><creatorcontrib>Sun, Jinrui</creatorcontrib><creatorcontrib>Pei, Mengjiao</creatorcontrib><creatorcontrib>Peng, Lichao</creatorcontrib><creatorcontrib>Dai, Qinyong</creatorcontrib><creatorcontrib>Wu, Chaoran</creatorcontrib><creatorcontrib>Gu, Jiahao</creatorcontrib><creatorcontrib>Yang, Yanqin</creatorcontrib><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Gu, Ding</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Guo, Huafei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Sai</au><au>Sun, Jinrui</au><au>Pei, Mengjiao</au><au>Peng, Lichao</au><au>Dai, Qinyong</au><au>Wu, Chaoran</au><au>Gu, Jiahao</au><au>Yang, Yanqin</au><au>Su, Jian</au><au>Gu, Ding</au><au>Zhang, Han</au><au>Guo, Huafei</au><au>Li, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>15</volume><issue>33</issue><spage>8501</spage><epage>8509</epage><pages>8501-8509</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The classification of critical physiological signals using neuromorphic devices is essential for early disease detection. Physical reservoir computing (RC), a lightweight temporal processing neural network, offers a promising solution for low-power, resource-constrained hardware. Although solution-processed memcapacitive reservoirs have the potential to improve power efficiency as a result of their ultralow static power consumption, further advancements in synaptic tunability and reservoir states are imperative to enhance the capabilities of RC systems. This work presents solution-processed electrolyte/ferroelectric memcapacitive synapses. Leveraging the synergistic coupling of electrical double-layer (EDL) effects and ferroelectric polarization, these synapses exhibit tunable long- and short-term plasticity, ultralow power consumption (∼27 fJ per spike), and rich reservoir state dynamics, making them well-suited for energy-efficient RC systems. The classifications of critical electrocardiogram (ECG) signals, including arrhythmia and obstructive sleep apnea (OSA), are performed using the synapse-based RC system, demonstrating excellent accuracies of 97.8 and 80.0% for arrhythmia and OSA classifications, respectively. These findings pave the way for developing lightweight, energy-efficient machine-learning platforms for biosignal classification in wearable devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39133786</pmid><doi>10.1021/acs.jpclett.4c01896</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1753-7317</orcidid><orcidid>https://orcid.org/0000-0002-9398-1105</orcidid><orcidid>https://orcid.org/0000-0002-8402-7539</orcidid><orcidid>https://orcid.org/0000-0002-0785-6528</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2024-08, Vol.15 (33), p.8501-8509 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_3092365434 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Physical Insights into Materials and Molecular Properties |
title | Energy-Efficient Reservoir Computing Based on Solution-Processed Electrolyte/Ferroelectric Memcapacitive Synapses for Biosignal Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Reservoir%20Computing%20Based%20on%20Solution-Processed%20Electrolyte/Ferroelectric%20Memcapacitive%20Synapses%20for%20Biosignal%20Classification&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Jiang,%20Sai&rft.date=2024-08-22&rft.volume=15&rft.issue=33&rft.spage=8501&rft.epage=8509&rft.pages=8501-8509&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.4c01896&rft_dat=%3Cproquest_cross%3E3092365434%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a225t-4191d2dcdaffaeacb3c63bf3eb48ab3e74a18187fd63ffd583f8ccde4c4028963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092365434&rft_id=info:pmid/39133786&rfr_iscdi=true |