Loading…
An Antiferromagnetic Neuromorphic Memory Based on Perpendicularly Magnetized CoO
Antiferromagnets (AFMs) are ideal materials to boost neuromorphic computing toward the ultrahigh speed and ultracompact integration regime. However, developing a suitable AFM neuromorphic memory remains an aspirational but challenging goal. In this work, we construct such a memory based on the CoO/P...
Saved in:
Published in: | Nano letters 2024-09, Vol.24 (36), p.11187-11193 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antiferromagnets (AFMs) are ideal materials to boost neuromorphic computing toward the ultrahigh speed and ultracompact integration regime. However, developing a suitable AFM neuromorphic memory remains an aspirational but challenging goal. In this work, we construct such a memory based on the CoO/Pt heterostructure, in which the collinear insulating AFM CoO shows a strong perpendicular anisotropy facilitating its electrical readout and writing. Utilizing the unique nonlinear response and bipolar fading memory properties of the device, we demonstrate a multidimensional reservoir computing beyond the traditional binary paradigm. These results are expected to pave the way toward next-generation fast and massive neuromorphic computing. |
---|---|
ISSN: | 1530-6984 1530-6992 1530-6992 |
DOI: | 10.1021/acs.nanolett.4c02340 |