Loading…

S²Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR

Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR). However, previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose esti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2025-01, Vol.44 (1), p.361-372
Main Authors: Pei, Jialun, Guo, Diandian, Zhang, Jingyang, Lin, Manxi, Jin, Yueming, Heng, Pheng-Ann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR). However, previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection. This pipeline may potentially compromise the flexibility of learning multimodal representations, consequently constraining the overall effectiveness. In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed S2Former-OR, aimed to complementally leverage multi-view 2D scenes and 3D point clouds for SGG in an end-to-end manner. Concretely, our model embraces a View-Sync Transfusion scheme to encourage multi-view visual information interaction. Concurrently, a Geometry-Visual Cohesion operation is designed to integrate the synergic 2D semantic features into 3D point cloud features. Moreover, based on the augmented feature, we propose a novel relation-sensitive transformer decoder that embeds dynamic entity-pair queries and relational trait priors, which enables the direct prediction of entity-pair relations for graph generation without intermediate steps. Extensive experiments have validated the superior SGG performance and lower computational cost of S2Former-OR on 4D-OR benchmark, compared with current OR-SGG methods, e.g., 3 percentage points Precision increase and 24.2M reduction in model parameters. We further compared our method with generic single-stage SGG methods with broader metrics for a comprehensive evaluation, with consistently better performance achieved. Our source code can be made available at: https://github.com/PJLallen/S2Former-OR .
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2024.3444279