Loading…
Bioassays with caged Hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations
The main objectives of this in situ study were to evaluate the usefulness of an in situ bioassay to determine if downstream water bodies at the Key Lake and Rabbit Lake uranium operations (Saskatchewan, Canada) were toxic to Hyalella azteca and, if toxicity was observed, to differentiate between the...
Saved in:
Published in: | Environmental toxicology and chemistry 2007-11, Vol.26 (11), p.2345-2355 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main objectives of this in situ study were to evaluate the usefulness of an in situ bioassay to determine if downstream water bodies at the Key Lake and Rabbit Lake uranium operations (Saskatchewan, Canada) were toxic to Hyalella azteca and, if toxicity was observed, to differentiate between the contribution of surface water and sediment contamination to in situ toxicity. These objectives were achieved by performing 4‐d in situ bioassays with laboratory‐reared H. azteca confined in specially designed, paired, surface water and sediment exposure chambers. Results from the in situ bioassays revealed significant mortality, relative to the respective reference site, at the exposure sites at both Key Lake (p ≤ 0.001) and Rabbit Lake (p = 0.001). No statistical differences were found between survival in surface water and sediment exposure chambers at either Key Lake (p = 0.232) or Rabbit Lake (p = 0.072). This suggests that surface water (the common feature of both types of exposure chambers) was the primary cause of in situ mortality of H. azteca at both operations, although this relationship was stronger at Key Lake. At Key Lake, the primary cause of aquatic toxicity to H. azteca did not appear to be correlated with the variables measured in this study, but most likely with a pulse of organic mill‐process chemicals released during the time of the in situ study — a transient event that was caused by a problem with the mill's solvent extraction process. The suspected cause of in situ toxicity to H. azteca at Rabbit Lake was high levels of uranium in surface water, sediment, and pore water. |
---|---|
ISSN: | 0730-7268 1552-8618 |
DOI: | 10.1897/06-489R.1 |