Loading…
Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia
•We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6...
Saved in:
Published in: | Clinical neurophysiology 2024-10, Vol.166, p.108-116 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3 |
container_end_page | 116 |
container_issue | |
container_start_page | 108 |
container_title | Clinical neurophysiology |
container_volume | 166 |
creator | Lacan, Laure Betrouni, Nacim Chaton, Laurence Lamblin, Marie-Dominique Flamein, Florence Riadh Boukhris, Mohamed Derambure, Philippe Nguyen The Tich, Sylvie |
description | •We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6 h of life.
The study aimed to address the challenge of early assessment of neonatal hypoxic-ischemic encephalopathy (HIE) severity to identify candidates for therapeutic hypothermia (TH). The objective was to develop an automated classification model for neonatal EEGs, enabling accurate HIE severity assessment 24/7.
EEGs recorded within 6 h of life after perinatal anoxia were visually graded into 3 severity groups (HIE French Classification) and quantified using 6 qEEG markers measuring amplitude, continuity and frequency content. Machine learning models were developed on a dataset of 90 EEGs and validated on an independent dataset of 60 EEGs.
The selected model achieved an overall accuracy of 80.6% in the development phase and 80% in the validation phase. Notably, the model accurately identified 28 out of 30 children for whom TH was indicated after visual EEG analysis, with only 2 cases (moderate EEG abnormalities) not recommended for cooling.
The combination of clinically relevant qEEG markers led to the development of an effective automated EEG classification model, particularly suited for the post-anoxic latency phase. This model successfully discriminated neonates requiring TH.
The proposed model has potential as a bedside clinical decision support tool for TH. |
doi_str_mv | 10.1016/j.clinph.2024.07.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094046382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388245724002141</els_id><sourcerecordid>3094046382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3</originalsourceid><addsrcrecordid>eNp9kDFv1TAUhS0EoqXwDxDyyJJgO07sLEhVVaBSJRaYrfvsG8VPSRxsB_H2Dsz8RH4Jjl5hZLLv1Tnn6nyEvOas5ox37461nfyyjrVgQtZM1Yy3T8gl10pUum_F0_JvtK6EbNUFeZHSkTGmmBTPyUXT87aRbX9JHm4hTicKWw4zZHTUTpCSH7yF7MNCw0AXDAtkmOh4WsMPbyuf7IiztxQXi-sIU1ghjyf6--cver1Q8I7mQPOI1KH1aY8p85Zw30VYccvFvKft8-zhJXk2wJTw1eN7Rb5-uP1y86m6__zx7ub6vrJC8lxxLQ_IBbS6ZWLQCno5OGGHQ1fmzoLruwYEKKVsx_gBHZeWdW2vrZIt10NzRd6ec9cYvm2YsplLF5wmKB23ZBrWSya7RosilWepjSGliINZo58hngxnZudvjubM3-z8DVOm8C-2N48XtsOM7p_pL_AieH8WYOn53WM0yfqdo_MRbTYu-P9f-ANJ5Jvf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094046382</pqid></control><display><type>article</type><title>Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia</title><source>ScienceDirect Freedom Collection</source><creator>Lacan, Laure ; Betrouni, Nacim ; Chaton, Laurence ; Lamblin, Marie-Dominique ; Flamein, Florence ; Riadh Boukhris, Mohamed ; Derambure, Philippe ; Nguyen The Tich, Sylvie</creator><creatorcontrib>Lacan, Laure ; Betrouni, Nacim ; Chaton, Laurence ; Lamblin, Marie-Dominique ; Flamein, Florence ; Riadh Boukhris, Mohamed ; Derambure, Philippe ; Nguyen The Tich, Sylvie</creatorcontrib><description>•We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6 h of life.
The study aimed to address the challenge of early assessment of neonatal hypoxic-ischemic encephalopathy (HIE) severity to identify candidates for therapeutic hypothermia (TH). The objective was to develop an automated classification model for neonatal EEGs, enabling accurate HIE severity assessment 24/7.
EEGs recorded within 6 h of life after perinatal anoxia were visually graded into 3 severity groups (HIE French Classification) and quantified using 6 qEEG markers measuring amplitude, continuity and frequency content. Machine learning models were developed on a dataset of 90 EEGs and validated on an independent dataset of 60 EEGs.
The selected model achieved an overall accuracy of 80.6% in the development phase and 80% in the validation phase. Notably, the model accurately identified 28 out of 30 children for whom TH was indicated after visual EEG analysis, with only 2 cases (moderate EEG abnormalities) not recommended for cooling.
The combination of clinically relevant qEEG markers led to the development of an effective automated EEG classification model, particularly suited for the post-anoxic latency phase. This model successfully discriminated neonates requiring TH.
The proposed model has potential as a bedside clinical decision support tool for TH.</description><identifier>ISSN: 1388-2457</identifier><identifier>ISSN: 1872-8952</identifier><identifier>EISSN: 1872-8952</identifier><identifier>DOI: 10.1016/j.clinph.2024.07.015</identifier><identifier>PMID: 39153459</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Automated classification model ; Electroencephalography - methods ; Female ; Humans ; Hypothermia, Induced - methods ; Hypoxia-Ischemia, Brain - classification ; Hypoxia-Ischemia, Brain - diagnosis ; Hypoxia-Ischemia, Brain - physiopathology ; Hypoxia-Ischemia, Brain - therapy ; Infant, Newborn ; Machine Learning ; Male ; Neonatal EEG ; Neonatal HIE ; Perinatal asphyxia ; Therapeutic hypothermia</subject><ispartof>Clinical neurophysiology, 2024-10, Vol.166, p.108-116</ispartof><rights>2024 International Federation of Clinical Neurophysiology</rights><rights>Copyright © 2024 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39153459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lacan, Laure</creatorcontrib><creatorcontrib>Betrouni, Nacim</creatorcontrib><creatorcontrib>Chaton, Laurence</creatorcontrib><creatorcontrib>Lamblin, Marie-Dominique</creatorcontrib><creatorcontrib>Flamein, Florence</creatorcontrib><creatorcontrib>Riadh Boukhris, Mohamed</creatorcontrib><creatorcontrib>Derambure, Philippe</creatorcontrib><creatorcontrib>Nguyen The Tich, Sylvie</creatorcontrib><title>Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia</title><title>Clinical neurophysiology</title><addtitle>Clin Neurophysiol</addtitle><description>•We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6 h of life.
The study aimed to address the challenge of early assessment of neonatal hypoxic-ischemic encephalopathy (HIE) severity to identify candidates for therapeutic hypothermia (TH). The objective was to develop an automated classification model for neonatal EEGs, enabling accurate HIE severity assessment 24/7.
EEGs recorded within 6 h of life after perinatal anoxia were visually graded into 3 severity groups (HIE French Classification) and quantified using 6 qEEG markers measuring amplitude, continuity and frequency content. Machine learning models were developed on a dataset of 90 EEGs and validated on an independent dataset of 60 EEGs.
The selected model achieved an overall accuracy of 80.6% in the development phase and 80% in the validation phase. Notably, the model accurately identified 28 out of 30 children for whom TH was indicated after visual EEG analysis, with only 2 cases (moderate EEG abnormalities) not recommended for cooling.
The combination of clinically relevant qEEG markers led to the development of an effective automated EEG classification model, particularly suited for the post-anoxic latency phase. This model successfully discriminated neonates requiring TH.
The proposed model has potential as a bedside clinical decision support tool for TH.</description><subject>Automated classification model</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Hypothermia, Induced - methods</subject><subject>Hypoxia-Ischemia, Brain - classification</subject><subject>Hypoxia-Ischemia, Brain - diagnosis</subject><subject>Hypoxia-Ischemia, Brain - physiopathology</subject><subject>Hypoxia-Ischemia, Brain - therapy</subject><subject>Infant, Newborn</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Neonatal EEG</subject><subject>Neonatal HIE</subject><subject>Perinatal asphyxia</subject><subject>Therapeutic hypothermia</subject><issn>1388-2457</issn><issn>1872-8952</issn><issn>1872-8952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv1TAUhS0EoqXwDxDyyJJgO07sLEhVVaBSJRaYrfvsG8VPSRxsB_H2Dsz8RH4Jjl5hZLLv1Tnn6nyEvOas5ox37461nfyyjrVgQtZM1Yy3T8gl10pUum_F0_JvtK6EbNUFeZHSkTGmmBTPyUXT87aRbX9JHm4hTicKWw4zZHTUTpCSH7yF7MNCw0AXDAtkmOh4WsMPbyuf7IiztxQXi-sIU1ghjyf6--cver1Q8I7mQPOI1KH1aY8p85Zw30VYccvFvKft8-zhJXk2wJTw1eN7Rb5-uP1y86m6__zx7ub6vrJC8lxxLQ_IBbS6ZWLQCno5OGGHQ1fmzoLruwYEKKVsx_gBHZeWdW2vrZIt10NzRd6ec9cYvm2YsplLF5wmKB23ZBrWSya7RosilWepjSGliINZo58hngxnZudvjubM3-z8DVOm8C-2N48XtsOM7p_pL_AieH8WYOn53WM0yfqdo_MRbTYu-P9f-ANJ5Jvf</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Lacan, Laure</creator><creator>Betrouni, Nacim</creator><creator>Chaton, Laurence</creator><creator>Lamblin, Marie-Dominique</creator><creator>Flamein, Florence</creator><creator>Riadh Boukhris, Mohamed</creator><creator>Derambure, Philippe</creator><creator>Nguyen The Tich, Sylvie</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202410</creationdate><title>Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia</title><author>Lacan, Laure ; Betrouni, Nacim ; Chaton, Laurence ; Lamblin, Marie-Dominique ; Flamein, Florence ; Riadh Boukhris, Mohamed ; Derambure, Philippe ; Nguyen The Tich, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automated classification model</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Hypothermia, Induced - methods</topic><topic>Hypoxia-Ischemia, Brain - classification</topic><topic>Hypoxia-Ischemia, Brain - diagnosis</topic><topic>Hypoxia-Ischemia, Brain - physiopathology</topic><topic>Hypoxia-Ischemia, Brain - therapy</topic><topic>Infant, Newborn</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Neonatal EEG</topic><topic>Neonatal HIE</topic><topic>Perinatal asphyxia</topic><topic>Therapeutic hypothermia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacan, Laure</creatorcontrib><creatorcontrib>Betrouni, Nacim</creatorcontrib><creatorcontrib>Chaton, Laurence</creatorcontrib><creatorcontrib>Lamblin, Marie-Dominique</creatorcontrib><creatorcontrib>Flamein, Florence</creatorcontrib><creatorcontrib>Riadh Boukhris, Mohamed</creatorcontrib><creatorcontrib>Derambure, Philippe</creatorcontrib><creatorcontrib>Nguyen The Tich, Sylvie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacan, Laure</au><au>Betrouni, Nacim</au><au>Chaton, Laurence</au><au>Lamblin, Marie-Dominique</au><au>Flamein, Florence</au><au>Riadh Boukhris, Mohamed</au><au>Derambure, Philippe</au><au>Nguyen The Tich, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia</atitle><jtitle>Clinical neurophysiology</jtitle><addtitle>Clin Neurophysiol</addtitle><date>2024-10</date><risdate>2024</risdate><volume>166</volume><spage>108</spage><epage>116</epage><pages>108-116</pages><issn>1388-2457</issn><issn>1872-8952</issn><eissn>1872-8952</eissn><abstract>•We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6 h of life.
The study aimed to address the challenge of early assessment of neonatal hypoxic-ischemic encephalopathy (HIE) severity to identify candidates for therapeutic hypothermia (TH). The objective was to develop an automated classification model for neonatal EEGs, enabling accurate HIE severity assessment 24/7.
EEGs recorded within 6 h of life after perinatal anoxia were visually graded into 3 severity groups (HIE French Classification) and quantified using 6 qEEG markers measuring amplitude, continuity and frequency content. Machine learning models were developed on a dataset of 90 EEGs and validated on an independent dataset of 60 EEGs.
The selected model achieved an overall accuracy of 80.6% in the development phase and 80% in the validation phase. Notably, the model accurately identified 28 out of 30 children for whom TH was indicated after visual EEG analysis, with only 2 cases (moderate EEG abnormalities) not recommended for cooling.
The combination of clinically relevant qEEG markers led to the development of an effective automated EEG classification model, particularly suited for the post-anoxic latency phase. This model successfully discriminated neonates requiring TH.
The proposed model has potential as a bedside clinical decision support tool for TH.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39153459</pmid><doi>10.1016/j.clinph.2024.07.015</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-2457 |
ispartof | Clinical neurophysiology, 2024-10, Vol.166, p.108-116 |
issn | 1388-2457 1872-8952 1872-8952 |
language | eng |
recordid | cdi_proquest_miscellaneous_3094046382 |
source | ScienceDirect Freedom Collection |
subjects | Automated classification model Electroencephalography - methods Female Humans Hypothermia, Induced - methods Hypoxia-Ischemia, Brain - classification Hypoxia-Ischemia, Brain - diagnosis Hypoxia-Ischemia, Brain - physiopathology Hypoxia-Ischemia, Brain - therapy Infant, Newborn Machine Learning Male Neonatal EEG Neonatal HIE Perinatal asphyxia Therapeutic hypothermia |
title | Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20automated%20classification%20of%20neonatal%20hypoxic-ischemic%20encephalopathy%20%E2%88%92%20An%20aid%20to%20the%20decision%20to%20use%20therapeutic%20hypothermia&rft.jtitle=Clinical%20neurophysiology&rft.au=Lacan,%20Laure&rft.date=2024-10&rft.volume=166&rft.spage=108&rft.epage=116&rft.pages=108-116&rft.issn=1388-2457&rft.eissn=1872-8952&rft_id=info:doi/10.1016/j.clinph.2024.07.015&rft_dat=%3Cproquest_cross%3E3094046382%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094046382&rft_id=info:pmid/39153459&rfr_iscdi=true |