Loading…

Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia

•We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6...

Full description

Saved in:
Bibliographic Details
Published in:Clinical neurophysiology 2024-10, Vol.166, p.108-116
Main Authors: Lacan, Laure, Betrouni, Nacim, Chaton, Laurence, Lamblin, Marie-Dominique, Flamein, Florence, Riadh Boukhris, Mohamed, Derambure, Philippe, Nguyen The Tich, Sylvie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3
container_end_page 116
container_issue
container_start_page 108
container_title Clinical neurophysiology
container_volume 166
creator Lacan, Laure
Betrouni, Nacim
Chaton, Laurence
Lamblin, Marie-Dominique
Flamein, Florence
Riadh Boukhris, Mohamed
Derambure, Philippe
Nguyen The Tich, Sylvie
description •We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6 h of life. The study aimed to address the challenge of early assessment of neonatal hypoxic-ischemic encephalopathy (HIE) severity to identify candidates for therapeutic hypothermia (TH). The objective was to develop an automated classification model for neonatal EEGs, enabling accurate HIE severity assessment 24/7. EEGs recorded within 6 h of life after perinatal anoxia were visually graded into 3 severity groups (HIE French Classification) and quantified using 6 qEEG markers measuring amplitude, continuity and frequency content. Machine learning models were developed on a dataset of 90 EEGs and validated on an independent dataset of 60 EEGs. The selected model achieved an overall accuracy of 80.6% in the development phase and 80% in the validation phase. Notably, the model accurately identified 28 out of 30 children for whom TH was indicated after visual EEG analysis, with only 2 cases (moderate EEG abnormalities) not recommended for cooling. The combination of clinically relevant qEEG markers led to the development of an effective automated EEG classification model, particularly suited for the post-anoxic latency phase. This model successfully discriminated neonates requiring TH. The proposed model has potential as a bedside clinical decision support tool for TH.
doi_str_mv 10.1016/j.clinph.2024.07.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094046382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388245724002141</els_id><sourcerecordid>3094046382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3</originalsourceid><addsrcrecordid>eNp9kDFv1TAUhS0EoqXwDxDyyJJgO07sLEhVVaBSJRaYrfvsG8VPSRxsB_H2Dsz8RH4Jjl5hZLLv1Tnn6nyEvOas5ox37461nfyyjrVgQtZM1Yy3T8gl10pUum_F0_JvtK6EbNUFeZHSkTGmmBTPyUXT87aRbX9JHm4hTicKWw4zZHTUTpCSH7yF7MNCw0AXDAtkmOh4WsMPbyuf7IiztxQXi-sIU1ghjyf6--cver1Q8I7mQPOI1KH1aY8p85Zw30VYccvFvKft8-zhJXk2wJTw1eN7Rb5-uP1y86m6__zx7ub6vrJC8lxxLQ_IBbS6ZWLQCno5OGGHQ1fmzoLruwYEKKVsx_gBHZeWdW2vrZIt10NzRd6ec9cYvm2YsplLF5wmKB23ZBrWSya7RosilWepjSGliINZo58hngxnZudvjubM3-z8DVOm8C-2N48XtsOM7p_pL_AieH8WYOn53WM0yfqdo_MRbTYu-P9f-ANJ5Jvf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094046382</pqid></control><display><type>article</type><title>Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia</title><source>ScienceDirect Freedom Collection</source><creator>Lacan, Laure ; Betrouni, Nacim ; Chaton, Laurence ; Lamblin, Marie-Dominique ; Flamein, Florence ; Riadh Boukhris, Mohamed ; Derambure, Philippe ; Nguyen The Tich, Sylvie</creator><creatorcontrib>Lacan, Laure ; Betrouni, Nacim ; Chaton, Laurence ; Lamblin, Marie-Dominique ; Flamein, Florence ; Riadh Boukhris, Mohamed ; Derambure, Philippe ; Nguyen The Tich, Sylvie</creatorcontrib><description>•We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6 h of life. The study aimed to address the challenge of early assessment of neonatal hypoxic-ischemic encephalopathy (HIE) severity to identify candidates for therapeutic hypothermia (TH). The objective was to develop an automated classification model for neonatal EEGs, enabling accurate HIE severity assessment 24/7. EEGs recorded within 6 h of life after perinatal anoxia were visually graded into 3 severity groups (HIE French Classification) and quantified using 6 qEEG markers measuring amplitude, continuity and frequency content. Machine learning models were developed on a dataset of 90 EEGs and validated on an independent dataset of 60 EEGs. The selected model achieved an overall accuracy of 80.6% in the development phase and 80% in the validation phase. Notably, the model accurately identified 28 out of 30 children for whom TH was indicated after visual EEG analysis, with only 2 cases (moderate EEG abnormalities) not recommended for cooling. The combination of clinically relevant qEEG markers led to the development of an effective automated EEG classification model, particularly suited for the post-anoxic latency phase. This model successfully discriminated neonates requiring TH. The proposed model has potential as a bedside clinical decision support tool for TH.</description><identifier>ISSN: 1388-2457</identifier><identifier>ISSN: 1872-8952</identifier><identifier>EISSN: 1872-8952</identifier><identifier>DOI: 10.1016/j.clinph.2024.07.015</identifier><identifier>PMID: 39153459</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Automated classification model ; Electroencephalography - methods ; Female ; Humans ; Hypothermia, Induced - methods ; Hypoxia-Ischemia, Brain - classification ; Hypoxia-Ischemia, Brain - diagnosis ; Hypoxia-Ischemia, Brain - physiopathology ; Hypoxia-Ischemia, Brain - therapy ; Infant, Newborn ; Machine Learning ; Male ; Neonatal EEG ; Neonatal HIE ; Perinatal asphyxia ; Therapeutic hypothermia</subject><ispartof>Clinical neurophysiology, 2024-10, Vol.166, p.108-116</ispartof><rights>2024 International Federation of Clinical Neurophysiology</rights><rights>Copyright © 2024 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39153459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lacan, Laure</creatorcontrib><creatorcontrib>Betrouni, Nacim</creatorcontrib><creatorcontrib>Chaton, Laurence</creatorcontrib><creatorcontrib>Lamblin, Marie-Dominique</creatorcontrib><creatorcontrib>Flamein, Florence</creatorcontrib><creatorcontrib>Riadh Boukhris, Mohamed</creatorcontrib><creatorcontrib>Derambure, Philippe</creatorcontrib><creatorcontrib>Nguyen The Tich, Sylvie</creatorcontrib><title>Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia</title><title>Clinical neurophysiology</title><addtitle>Clin Neurophysiol</addtitle><description>•We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6 h of life. The study aimed to address the challenge of early assessment of neonatal hypoxic-ischemic encephalopathy (HIE) severity to identify candidates for therapeutic hypothermia (TH). The objective was to develop an automated classification model for neonatal EEGs, enabling accurate HIE severity assessment 24/7. EEGs recorded within 6 h of life after perinatal anoxia were visually graded into 3 severity groups (HIE French Classification) and quantified using 6 qEEG markers measuring amplitude, continuity and frequency content. Machine learning models were developed on a dataset of 90 EEGs and validated on an independent dataset of 60 EEGs. The selected model achieved an overall accuracy of 80.6% in the development phase and 80% in the validation phase. Notably, the model accurately identified 28 out of 30 children for whom TH was indicated after visual EEG analysis, with only 2 cases (moderate EEG abnormalities) not recommended for cooling. The combination of clinically relevant qEEG markers led to the development of an effective automated EEG classification model, particularly suited for the post-anoxic latency phase. This model successfully discriminated neonates requiring TH. The proposed model has potential as a bedside clinical decision support tool for TH.</description><subject>Automated classification model</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Hypothermia, Induced - methods</subject><subject>Hypoxia-Ischemia, Brain - classification</subject><subject>Hypoxia-Ischemia, Brain - diagnosis</subject><subject>Hypoxia-Ischemia, Brain - physiopathology</subject><subject>Hypoxia-Ischemia, Brain - therapy</subject><subject>Infant, Newborn</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Neonatal EEG</subject><subject>Neonatal HIE</subject><subject>Perinatal asphyxia</subject><subject>Therapeutic hypothermia</subject><issn>1388-2457</issn><issn>1872-8952</issn><issn>1872-8952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv1TAUhS0EoqXwDxDyyJJgO07sLEhVVaBSJRaYrfvsG8VPSRxsB_H2Dsz8RH4Jjl5hZLLv1Tnn6nyEvOas5ox37461nfyyjrVgQtZM1Yy3T8gl10pUum_F0_JvtK6EbNUFeZHSkTGmmBTPyUXT87aRbX9JHm4hTicKWw4zZHTUTpCSH7yF7MNCw0AXDAtkmOh4WsMPbyuf7IiztxQXi-sIU1ghjyf6--cver1Q8I7mQPOI1KH1aY8p85Zw30VYccvFvKft8-zhJXk2wJTw1eN7Rb5-uP1y86m6__zx7ub6vrJC8lxxLQ_IBbS6ZWLQCno5OGGHQ1fmzoLruwYEKKVsx_gBHZeWdW2vrZIt10NzRd6ec9cYvm2YsplLF5wmKB23ZBrWSya7RosilWepjSGliINZo58hngxnZudvjubM3-z8DVOm8C-2N48XtsOM7p_pL_AieH8WYOn53WM0yfqdo_MRbTYu-P9f-ANJ5Jvf</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Lacan, Laure</creator><creator>Betrouni, Nacim</creator><creator>Chaton, Laurence</creator><creator>Lamblin, Marie-Dominique</creator><creator>Flamein, Florence</creator><creator>Riadh Boukhris, Mohamed</creator><creator>Derambure, Philippe</creator><creator>Nguyen The Tich, Sylvie</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202410</creationdate><title>Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia</title><author>Lacan, Laure ; Betrouni, Nacim ; Chaton, Laurence ; Lamblin, Marie-Dominique ; Flamein, Florence ; Riadh Boukhris, Mohamed ; Derambure, Philippe ; Nguyen The Tich, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automated classification model</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Hypothermia, Induced - methods</topic><topic>Hypoxia-Ischemia, Brain - classification</topic><topic>Hypoxia-Ischemia, Brain - diagnosis</topic><topic>Hypoxia-Ischemia, Brain - physiopathology</topic><topic>Hypoxia-Ischemia, Brain - therapy</topic><topic>Infant, Newborn</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Neonatal EEG</topic><topic>Neonatal HIE</topic><topic>Perinatal asphyxia</topic><topic>Therapeutic hypothermia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacan, Laure</creatorcontrib><creatorcontrib>Betrouni, Nacim</creatorcontrib><creatorcontrib>Chaton, Laurence</creatorcontrib><creatorcontrib>Lamblin, Marie-Dominique</creatorcontrib><creatorcontrib>Flamein, Florence</creatorcontrib><creatorcontrib>Riadh Boukhris, Mohamed</creatorcontrib><creatorcontrib>Derambure, Philippe</creatorcontrib><creatorcontrib>Nguyen The Tich, Sylvie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacan, Laure</au><au>Betrouni, Nacim</au><au>Chaton, Laurence</au><au>Lamblin, Marie-Dominique</au><au>Flamein, Florence</au><au>Riadh Boukhris, Mohamed</au><au>Derambure, Philippe</au><au>Nguyen The Tich, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia</atitle><jtitle>Clinical neurophysiology</jtitle><addtitle>Clin Neurophysiol</addtitle><date>2024-10</date><risdate>2024</risdate><volume>166</volume><spage>108</spage><epage>116</epage><pages>108-116</pages><issn>1388-2457</issn><issn>1872-8952</issn><eissn>1872-8952</eissn><abstract>•We use qEEG analysis to mimic a visual EEG analysis approach in neonatal hypoxic-ischemic encephalopathy.•Machine learning models were developed and validated on two independent EEG datasets.•The proposed model is effective in discriminating neonates requiring therapeutic hypothermia in the first 6 h of life. The study aimed to address the challenge of early assessment of neonatal hypoxic-ischemic encephalopathy (HIE) severity to identify candidates for therapeutic hypothermia (TH). The objective was to develop an automated classification model for neonatal EEGs, enabling accurate HIE severity assessment 24/7. EEGs recorded within 6 h of life after perinatal anoxia were visually graded into 3 severity groups (HIE French Classification) and quantified using 6 qEEG markers measuring amplitude, continuity and frequency content. Machine learning models were developed on a dataset of 90 EEGs and validated on an independent dataset of 60 EEGs. The selected model achieved an overall accuracy of 80.6% in the development phase and 80% in the validation phase. Notably, the model accurately identified 28 out of 30 children for whom TH was indicated after visual EEG analysis, with only 2 cases (moderate EEG abnormalities) not recommended for cooling. The combination of clinically relevant qEEG markers led to the development of an effective automated EEG classification model, particularly suited for the post-anoxic latency phase. This model successfully discriminated neonates requiring TH. The proposed model has potential as a bedside clinical decision support tool for TH.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39153459</pmid><doi>10.1016/j.clinph.2024.07.015</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-2457
ispartof Clinical neurophysiology, 2024-10, Vol.166, p.108-116
issn 1388-2457
1872-8952
1872-8952
language eng
recordid cdi_proquest_miscellaneous_3094046382
source ScienceDirect Freedom Collection
subjects Automated classification model
Electroencephalography - methods
Female
Humans
Hypothermia, Induced - methods
Hypoxia-Ischemia, Brain - classification
Hypoxia-Ischemia, Brain - diagnosis
Hypoxia-Ischemia, Brain - physiopathology
Hypoxia-Ischemia, Brain - therapy
Infant, Newborn
Machine Learning
Male
Neonatal EEG
Neonatal HIE
Perinatal asphyxia
Therapeutic hypothermia
title Early automated classification of neonatal hypoxic-ischemic encephalopathy − An aid to the decision to use therapeutic hypothermia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20automated%20classification%20of%20neonatal%20hypoxic-ischemic%20encephalopathy%20%E2%88%92%20An%20aid%20to%20the%20decision%20to%20use%20therapeutic%20hypothermia&rft.jtitle=Clinical%20neurophysiology&rft.au=Lacan,%20Laure&rft.date=2024-10&rft.volume=166&rft.spage=108&rft.epage=116&rft.pages=108-116&rft.issn=1388-2457&rft.eissn=1872-8952&rft_id=info:doi/10.1016/j.clinph.2024.07.015&rft_dat=%3Cproquest_cross%3E3094046382%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-184be12a58502f87a94fd2cfb65026cad963a2a777c601bed14c06598c74518f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094046382&rft_id=info:pmid/39153459&rfr_iscdi=true