Loading…
Crosslinking of rotational molding foams of polyethylene
Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity...
Saved in:
Published in: | Polymer engineering and science 2007-11, Vol.47 (11), p.1804-1812 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83 |
container_end_page | 1812 |
container_issue | 11 |
container_start_page | 1804 |
container_title | Polymer engineering and science |
container_volume | 47 |
creator | Marcilla, A. García-Quesada, J.C. Ruiz-Femenia, R. Beltrán, M.I. |
description | Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity and cell size reduction. To improve the cell morphology of the PE foams, the cell coalescence and coarsening might be suppressed, which can be accomplished preserving the melt strength of the polymer during processing. With this aim, in this work two peroxides have been used to enhance the melt strength of a linear low‐density polyethylene by chemical crosslinking. The moldings have been processed at different oven residence times and they have been characterized according to their density, gel content, bubble size distribution and impact strength. Despite the lower crosslinking degree attained by the crosslinked foams, the results show an enhancement in the cell morphology of these moldings, which are able to keep their cell size distribution even with the longest processing times and consequently the processing window of these rotational molding foams is widened. POLYM. ENG. SCI., 47:1804–1812, 2007. © 2007 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.20880 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_30940635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A171141684</galeid><sourcerecordid>A171141684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83</originalsourceid><addsrcrecordid>eNp1kVtvEzEQhVcIJELhgX8QIYHEw6bjtdeXxypq2oqqIC7qozXreINbr53aG0H-PQ4JIFCQHyzNfGc0Z05VvSQwIwDN6dqGWQNSwqNqQlom64ZT9riaANCmplLKp9WznO-gsLRVk0rOU8zZu3Dvwmoa-2mKI44uBvTTIfrlrtpHHPKut45-a8evW2-DfV496dFn--Lwn1RfFuef55f19fuLq_nZdW1a4FBzwlQLFjokEiwXCA2yhnGmesk7pTgnqluiEAKkIdAZwRkaaBU0phOdpCfVm_3cdYoPG5tHPbhsrPcYbNxkTUEx4LQt4Kt_wLu4ScVH1g2RnFBBaIHqPbRCb7ULfRwTmlXxk9DHYHtXymdEEMIIl6zwsyN8eUs7OHNU8PYvQWFG-31c4SZnffXp41HW7DJIttfr5AZMW01A79LUJU39M83Cvj64w2zQ9wmDcfmPQBGlylkLd7rnvpXFtv8fqD-c3_yafDiJy2XT3wpM95oLKlp9e3OhF2wub98tLjWjPwDg1Ljc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218613713</pqid></control><display><type>article</type><title>Crosslinking of rotational molding foams of polyethylene</title><source>Wiley</source><creator>Marcilla, A. ; García-Quesada, J.C. ; Ruiz-Femenia, R. ; Beltrán, M.I.</creator><creatorcontrib>Marcilla, A. ; García-Quesada, J.C. ; Ruiz-Femenia, R. ; Beltrán, M.I.</creatorcontrib><description>Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity and cell size reduction. To improve the cell morphology of the PE foams, the cell coalescence and coarsening might be suppressed, which can be accomplished preserving the melt strength of the polymer during processing. With this aim, in this work two peroxides have been used to enhance the melt strength of a linear low‐density polyethylene by chemical crosslinking. The moldings have been processed at different oven residence times and they have been characterized according to their density, gel content, bubble size distribution and impact strength. Despite the lower crosslinking degree attained by the crosslinked foams, the results show an enhancement in the cell morphology of these moldings, which are able to keep their cell size distribution even with the longest processing times and consequently the processing window of these rotational molding foams is widened. POLYM. ENG. SCI., 47:1804–1812, 2007. © 2007 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.20880</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Cellular ; Chemical properties ; Crosslinked polymers ; Crosslinking polymerization ; Exact sciences and technology ; Forms of application and semi-finished materials ; Materials science ; Methods ; Peroxides ; Plastic foams ; Polyethylene ; Polymer industry, paints, wood ; Polymer melt processing ; Properties ; Technology of polymers ; Vinyl polymers</subject><ispartof>Polymer engineering and science, 2007-11, Vol.47 (11), p.1804-1812</ispartof><rights>Copyright © 2007 Society of Plastics Engineers</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2007 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Nov 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83</citedby><cites>FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19199246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marcilla, A.</creatorcontrib><creatorcontrib>García-Quesada, J.C.</creatorcontrib><creatorcontrib>Ruiz-Femenia, R.</creatorcontrib><creatorcontrib>Beltrán, M.I.</creatorcontrib><title>Crosslinking of rotational molding foams of polyethylene</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity and cell size reduction. To improve the cell morphology of the PE foams, the cell coalescence and coarsening might be suppressed, which can be accomplished preserving the melt strength of the polymer during processing. With this aim, in this work two peroxides have been used to enhance the melt strength of a linear low‐density polyethylene by chemical crosslinking. The moldings have been processed at different oven residence times and they have been characterized according to their density, gel content, bubble size distribution and impact strength. Despite the lower crosslinking degree attained by the crosslinked foams, the results show an enhancement in the cell morphology of these moldings, which are able to keep their cell size distribution even with the longest processing times and consequently the processing window of these rotational molding foams is widened. POLYM. ENG. SCI., 47:1804–1812, 2007. © 2007 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Cellular</subject><subject>Chemical properties</subject><subject>Crosslinked polymers</subject><subject>Crosslinking polymerization</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Materials science</subject><subject>Methods</subject><subject>Peroxides</subject><subject>Plastic foams</subject><subject>Polyethylene</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer melt processing</subject><subject>Properties</subject><subject>Technology of polymers</subject><subject>Vinyl polymers</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kVtvEzEQhVcIJELhgX8QIYHEw6bjtdeXxypq2oqqIC7qozXreINbr53aG0H-PQ4JIFCQHyzNfGc0Z05VvSQwIwDN6dqGWQNSwqNqQlom64ZT9riaANCmplLKp9WznO-gsLRVk0rOU8zZu3Dvwmoa-2mKI44uBvTTIfrlrtpHHPKut45-a8evW2-DfV496dFn--Lwn1RfFuef55f19fuLq_nZdW1a4FBzwlQLFjokEiwXCA2yhnGmesk7pTgnqluiEAKkIdAZwRkaaBU0phOdpCfVm_3cdYoPG5tHPbhsrPcYbNxkTUEx4LQt4Kt_wLu4ScVH1g2RnFBBaIHqPbRCb7ULfRwTmlXxk9DHYHtXymdEEMIIl6zwsyN8eUs7OHNU8PYvQWFG-31c4SZnffXp41HW7DJIttfr5AZMW01A79LUJU39M83Cvj64w2zQ9wmDcfmPQBGlylkLd7rnvpXFtv8fqD-c3_yafDiJy2XT3wpM95oLKlp9e3OhF2wub98tLjWjPwDg1Ljc</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Marcilla, A.</creator><creator>García-Quesada, J.C.</creator><creator>Ruiz-Femenia, R.</creator><creator>Beltrán, M.I.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200711</creationdate><title>Crosslinking of rotational molding foams of polyethylene</title><author>Marcilla, A. ; García-Quesada, J.C. ; Ruiz-Femenia, R. ; Beltrán, M.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Cellular</topic><topic>Chemical properties</topic><topic>Crosslinked polymers</topic><topic>Crosslinking polymerization</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Materials science</topic><topic>Methods</topic><topic>Peroxides</topic><topic>Plastic foams</topic><topic>Polyethylene</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer melt processing</topic><topic>Properties</topic><topic>Technology of polymers</topic><topic>Vinyl polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcilla, A.</creatorcontrib><creatorcontrib>García-Quesada, J.C.</creatorcontrib><creatorcontrib>Ruiz-Femenia, R.</creatorcontrib><creatorcontrib>Beltrán, M.I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcilla, A.</au><au>García-Quesada, J.C.</au><au>Ruiz-Femenia, R.</au><au>Beltrán, M.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crosslinking of rotational molding foams of polyethylene</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2007-11</date><risdate>2007</risdate><volume>47</volume><issue>11</issue><spage>1804</spage><epage>1812</epage><pages>1804-1812</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity and cell size reduction. To improve the cell morphology of the PE foams, the cell coalescence and coarsening might be suppressed, which can be accomplished preserving the melt strength of the polymer during processing. With this aim, in this work two peroxides have been used to enhance the melt strength of a linear low‐density polyethylene by chemical crosslinking. The moldings have been processed at different oven residence times and they have been characterized according to their density, gel content, bubble size distribution and impact strength. Despite the lower crosslinking degree attained by the crosslinked foams, the results show an enhancement in the cell morphology of these moldings, which are able to keep their cell size distribution even with the longest processing times and consequently the processing window of these rotational molding foams is widened. POLYM. ENG. SCI., 47:1804–1812, 2007. © 2007 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.20880</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2007-11, Vol.47 (11), p.1804-1812 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_miscellaneous_30940635 |
source | Wiley |
subjects | Applied sciences Cellular Chemical properties Crosslinked polymers Crosslinking polymerization Exact sciences and technology Forms of application and semi-finished materials Materials science Methods Peroxides Plastic foams Polyethylene Polymer industry, paints, wood Polymer melt processing Properties Technology of polymers Vinyl polymers |
title | Crosslinking of rotational molding foams of polyethylene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crosslinking%20of%20rotational%20molding%20foams%20of%20polyethylene&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Marcilla,%20A.&rft.date=2007-11&rft.volume=47&rft.issue=11&rft.spage=1804&rft.epage=1812&rft.pages=1804-1812&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.20880&rft_dat=%3Cgale_proqu%3EA171141684%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218613713&rft_id=info:pmid/&rft_galeid=A171141684&rfr_iscdi=true |