Loading…

Crosslinking of rotational molding foams of polyethylene

Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2007-11, Vol.47 (11), p.1804-1812
Main Authors: Marcilla, A., García-Quesada, J.C., Ruiz-Femenia, R., Beltrán, M.I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83
cites cdi_FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83
container_end_page 1812
container_issue 11
container_start_page 1804
container_title Polymer engineering and science
container_volume 47
creator Marcilla, A.
García-Quesada, J.C.
Ruiz-Femenia, R.
Beltrán, M.I.
description Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity and cell size reduction. To improve the cell morphology of the PE foams, the cell coalescence and coarsening might be suppressed, which can be accomplished preserving the melt strength of the polymer during processing. With this aim, in this work two peroxides have been used to enhance the melt strength of a linear low‐density polyethylene by chemical crosslinking. The moldings have been processed at different oven residence times and they have been characterized according to their density, gel content, bubble size distribution and impact strength. Despite the lower crosslinking degree attained by the crosslinked foams, the results show an enhancement in the cell morphology of these moldings, which are able to keep their cell size distribution even with the longest processing times and consequently the processing window of these rotational molding foams is widened. POLYM. ENG. SCI., 47:1804–1812, 2007. © 2007 Society of Plastics Engineers
doi_str_mv 10.1002/pen.20880
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_30940635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A171141684</galeid><sourcerecordid>A171141684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83</originalsourceid><addsrcrecordid>eNp1kVtvEzEQhVcIJELhgX8QIYHEw6bjtdeXxypq2oqqIC7qozXreINbr53aG0H-PQ4JIFCQHyzNfGc0Z05VvSQwIwDN6dqGWQNSwqNqQlom64ZT9riaANCmplLKp9WznO-gsLRVk0rOU8zZu3Dvwmoa-2mKI44uBvTTIfrlrtpHHPKut45-a8evW2-DfV496dFn--Lwn1RfFuef55f19fuLq_nZdW1a4FBzwlQLFjokEiwXCA2yhnGmesk7pTgnqluiEAKkIdAZwRkaaBU0phOdpCfVm_3cdYoPG5tHPbhsrPcYbNxkTUEx4LQt4Kt_wLu4ScVH1g2RnFBBaIHqPbRCb7ULfRwTmlXxk9DHYHtXymdEEMIIl6zwsyN8eUs7OHNU8PYvQWFG-31c4SZnffXp41HW7DJIttfr5AZMW01A79LUJU39M83Cvj64w2zQ9wmDcfmPQBGlylkLd7rnvpXFtv8fqD-c3_yafDiJy2XT3wpM95oLKlp9e3OhF2wub98tLjWjPwDg1Ljc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218613713</pqid></control><display><type>article</type><title>Crosslinking of rotational molding foams of polyethylene</title><source>Wiley</source><creator>Marcilla, A. ; García-Quesada, J.C. ; Ruiz-Femenia, R. ; Beltrán, M.I.</creator><creatorcontrib>Marcilla, A. ; García-Quesada, J.C. ; Ruiz-Femenia, R. ; Beltrán, M.I.</creatorcontrib><description>Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity and cell size reduction. To improve the cell morphology of the PE foams, the cell coalescence and coarsening might be suppressed, which can be accomplished preserving the melt strength of the polymer during processing. With this aim, in this work two peroxides have been used to enhance the melt strength of a linear low‐density polyethylene by chemical crosslinking. The moldings have been processed at different oven residence times and they have been characterized according to their density, gel content, bubble size distribution and impact strength. Despite the lower crosslinking degree attained by the crosslinked foams, the results show an enhancement in the cell morphology of these moldings, which are able to keep their cell size distribution even with the longest processing times and consequently the processing window of these rotational molding foams is widened. POLYM. ENG. SCI., 47:1804–1812, 2007. © 2007 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.20880</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Cellular ; Chemical properties ; Crosslinked polymers ; Crosslinking polymerization ; Exact sciences and technology ; Forms of application and semi-finished materials ; Materials science ; Methods ; Peroxides ; Plastic foams ; Polyethylene ; Polymer industry, paints, wood ; Polymer melt processing ; Properties ; Technology of polymers ; Vinyl polymers</subject><ispartof>Polymer engineering and science, 2007-11, Vol.47 (11), p.1804-1812</ispartof><rights>Copyright © 2007 Society of Plastics Engineers</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2007 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Nov 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83</citedby><cites>FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19199246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marcilla, A.</creatorcontrib><creatorcontrib>García-Quesada, J.C.</creatorcontrib><creatorcontrib>Ruiz-Femenia, R.</creatorcontrib><creatorcontrib>Beltrán, M.I.</creatorcontrib><title>Crosslinking of rotational molding foams of polyethylene</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity and cell size reduction. To improve the cell morphology of the PE foams, the cell coalescence and coarsening might be suppressed, which can be accomplished preserving the melt strength of the polymer during processing. With this aim, in this work two peroxides have been used to enhance the melt strength of a linear low‐density polyethylene by chemical crosslinking. The moldings have been processed at different oven residence times and they have been characterized according to their density, gel content, bubble size distribution and impact strength. Despite the lower crosslinking degree attained by the crosslinked foams, the results show an enhancement in the cell morphology of these moldings, which are able to keep their cell size distribution even with the longest processing times and consequently the processing window of these rotational molding foams is widened. POLYM. ENG. SCI., 47:1804–1812, 2007. © 2007 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Cellular</subject><subject>Chemical properties</subject><subject>Crosslinked polymers</subject><subject>Crosslinking polymerization</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Materials science</subject><subject>Methods</subject><subject>Peroxides</subject><subject>Plastic foams</subject><subject>Polyethylene</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer melt processing</subject><subject>Properties</subject><subject>Technology of polymers</subject><subject>Vinyl polymers</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kVtvEzEQhVcIJELhgX8QIYHEw6bjtdeXxypq2oqqIC7qozXreINbr53aG0H-PQ4JIFCQHyzNfGc0Z05VvSQwIwDN6dqGWQNSwqNqQlom64ZT9riaANCmplLKp9WznO-gsLRVk0rOU8zZu3Dvwmoa-2mKI44uBvTTIfrlrtpHHPKut45-a8evW2-DfV496dFn--Lwn1RfFuef55f19fuLq_nZdW1a4FBzwlQLFjokEiwXCA2yhnGmesk7pTgnqluiEAKkIdAZwRkaaBU0phOdpCfVm_3cdYoPG5tHPbhsrPcYbNxkTUEx4LQt4Kt_wLu4ScVH1g2RnFBBaIHqPbRCb7ULfRwTmlXxk9DHYHtXymdEEMIIl6zwsyN8eUs7OHNU8PYvQWFG-31c4SZnffXp41HW7DJIttfr5AZMW01A79LUJU39M83Cvj64w2zQ9wmDcfmPQBGlylkLd7rnvpXFtv8fqD-c3_yafDiJy2XT3wpM95oLKlp9e3OhF2wub98tLjWjPwDg1Ljc</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Marcilla, A.</creator><creator>García-Quesada, J.C.</creator><creator>Ruiz-Femenia, R.</creator><creator>Beltrán, M.I.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200711</creationdate><title>Crosslinking of rotational molding foams of polyethylene</title><author>Marcilla, A. ; García-Quesada, J.C. ; Ruiz-Femenia, R. ; Beltrán, M.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Cellular</topic><topic>Chemical properties</topic><topic>Crosslinked polymers</topic><topic>Crosslinking polymerization</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Materials science</topic><topic>Methods</topic><topic>Peroxides</topic><topic>Plastic foams</topic><topic>Polyethylene</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer melt processing</topic><topic>Properties</topic><topic>Technology of polymers</topic><topic>Vinyl polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcilla, A.</creatorcontrib><creatorcontrib>García-Quesada, J.C.</creatorcontrib><creatorcontrib>Ruiz-Femenia, R.</creatorcontrib><creatorcontrib>Beltrán, M.I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcilla, A.</au><au>García-Quesada, J.C.</au><au>Ruiz-Femenia, R.</au><au>Beltrán, M.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crosslinking of rotational molding foams of polyethylene</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2007-11</date><risdate>2007</risdate><volume>47</volume><issue>11</issue><spage>1804</spage><epage>1812</epage><pages>1804-1812</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>Rotational molding of foamed polyethylene has increasingly become an important process in industry due to its ability to produce innovative and high added value parts with little specialist equipment required. The polyolefin foam production tends to achieve the highest possible cell size uniformity and cell size reduction. To improve the cell morphology of the PE foams, the cell coalescence and coarsening might be suppressed, which can be accomplished preserving the melt strength of the polymer during processing. With this aim, in this work two peroxides have been used to enhance the melt strength of a linear low‐density polyethylene by chemical crosslinking. The moldings have been processed at different oven residence times and they have been characterized according to their density, gel content, bubble size distribution and impact strength. Despite the lower crosslinking degree attained by the crosslinked foams, the results show an enhancement in the cell morphology of these moldings, which are able to keep their cell size distribution even with the longest processing times and consequently the processing window of these rotational molding foams is widened. POLYM. ENG. SCI., 47:1804–1812, 2007. © 2007 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.20880</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2007-11, Vol.47 (11), p.1804-1812
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_30940635
source Wiley
subjects Applied sciences
Cellular
Chemical properties
Crosslinked polymers
Crosslinking polymerization
Exact sciences and technology
Forms of application and semi-finished materials
Materials science
Methods
Peroxides
Plastic foams
Polyethylene
Polymer industry, paints, wood
Polymer melt processing
Properties
Technology of polymers
Vinyl polymers
title Crosslinking of rotational molding foams of polyethylene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crosslinking%20of%20rotational%20molding%20foams%20of%20polyethylene&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Marcilla,%20A.&rft.date=2007-11&rft.volume=47&rft.issue=11&rft.spage=1804&rft.epage=1812&rft.pages=1804-1812&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.20880&rft_dat=%3Cgale_proqu%3EA171141684%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5060-614950e0ba180e67a02a424649f86b996619bda77708c10bc764ac05902cb7b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218613713&rft_id=info:pmid/&rft_galeid=A171141684&rfr_iscdi=true