Loading…
Strategies and Applications for Supramolecular Protein Self‐Assembly
Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomate...
Saved in:
Published in: | Chemistry : a European journal 2024-11, Vol.30 (66), p.e202402624-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3 |
container_end_page | n/a |
container_issue | 66 |
container_start_page | e202402624 |
container_title | Chemistry : a European journal |
container_volume | 30 |
creator | Li, Yijia Tian, Ruizhen Zou, Yingping Wang, Tingting Liu, Junqiu |
description | Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self‐assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self‐assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host‐guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies′ unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio‐delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected.
Supramolecular hierarchical protein self‐assembly is vital for constructing diverse and functional biomaterials, as well as to explore information exchange and cooperation between proteins. In this paper, the classical supramolecular protein assembly construction strategies and the flexible regulaion of assemblies are summarized and analyzed. In addition, the applications and the enormous potential and significance of supramolecular protein materials are also reviewed. |
doi_str_mv | 10.1002/chem.202402624 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094473258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094473258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotl62LmXAjZupuUwyk2UprRUqCtV1SDIZnZK5mMwg3fkIPqNPYkprBTeuDge-851zfgAuEBwhCPGNfjXVCEOcQMxwcgCGiGIUk5TRQzCEPEljRgkfgBPvVxBCzgg5BgPCEc0ookMwW3ZOdualND6SdR6N29aWWnZlU_uoaFy07Fsnq8Ya3VvpokfXdKaso6WxxdfH59h7Uym7PgNHhbTenO_qKXieTZ8m83jxcHs3GS9ijWmWxCwpqFZFohg0muaZUZsOkzQluVZ5zjDjlGCVZVwTTSlHBVYswFClPFMFOQXXW2_rmrfe-E5UpdfGWlmbpveChJeTlIRlAb36g66a3tXhOkEQwWElgzBQoy2lXeO9M4VoXVlJtxYIik3CYpOw2CccBi532l5VJt_jP5EGgG-B99Ka9T86MZlP73_l37THiFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132773600</pqid></control><display><type>article</type><title>Strategies and Applications for Supramolecular Protein Self‐Assembly</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Li, Yijia ; Tian, Ruizhen ; Zou, Yingping ; Wang, Tingting ; Liu, Junqiu</creator><creatorcontrib>Li, Yijia ; Tian, Ruizhen ; Zou, Yingping ; Wang, Tingting ; Liu, Junqiu</creatorcontrib><description>Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self‐assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self‐assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host‐guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies′ unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio‐delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected.
Supramolecular hierarchical protein self‐assembly is vital for constructing diverse and functional biomaterials, as well as to explore information exchange and cooperation between proteins. In this paper, the classical supramolecular protein assembly construction strategies and the flexible regulaion of assemblies are summarized and analyzed. In addition, the applications and the enormous potential and significance of supramolecular protein materials are also reviewed.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202402624</identifier><identifier>PMID: 39158515</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assemblies ; Biomaterial ; Biomaterials ; Biomedical materials ; Electrostatic properties ; Functional materials ; Gene polymorphism ; Hydrogels - chemistry ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Polymorphism ; Protein nanostructure ; Protein self-assembly ; Proteins ; Proteins - chemistry ; Self-assembly ; Static Electricity ; Structure-function relationships ; Supramolecular assembly strategy ; Supramolecular chemistry</subject><ispartof>Chemistry : a European journal, 2024-11, Vol.30 (66), p.e202402624-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3</cites><orcidid>0000-0003-1608-7908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39158515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yijia</creatorcontrib><creatorcontrib>Tian, Ruizhen</creatorcontrib><creatorcontrib>Zou, Yingping</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><title>Strategies and Applications for Supramolecular Protein Self‐Assembly</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self‐assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self‐assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host‐guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies′ unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio‐delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected.
Supramolecular hierarchical protein self‐assembly is vital for constructing diverse and functional biomaterials, as well as to explore information exchange and cooperation between proteins. In this paper, the classical supramolecular protein assembly construction strategies and the flexible regulaion of assemblies are summarized and analyzed. In addition, the applications and the enormous potential and significance of supramolecular protein materials are also reviewed.</description><subject>Assemblies</subject><subject>Biomaterial</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Electrostatic properties</subject><subject>Functional materials</subject><subject>Gene polymorphism</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Polymorphism</subject><subject>Protein nanostructure</subject><subject>Protein self-assembly</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Self-assembly</subject><subject>Static Electricity</subject><subject>Structure-function relationships</subject><subject>Supramolecular assembly strategy</subject><subject>Supramolecular chemistry</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMotl62LmXAjZupuUwyk2UprRUqCtV1SDIZnZK5mMwg3fkIPqNPYkprBTeuDge-851zfgAuEBwhCPGNfjXVCEOcQMxwcgCGiGIUk5TRQzCEPEljRgkfgBPvVxBCzgg5BgPCEc0ookMwW3ZOdualND6SdR6N29aWWnZlU_uoaFy07Fsnq8Ya3VvpokfXdKaso6WxxdfH59h7Uym7PgNHhbTenO_qKXieTZ8m83jxcHs3GS9ijWmWxCwpqFZFohg0muaZUZsOkzQluVZ5zjDjlGCVZVwTTSlHBVYswFClPFMFOQXXW2_rmrfe-E5UpdfGWlmbpveChJeTlIRlAb36g66a3tXhOkEQwWElgzBQoy2lXeO9M4VoXVlJtxYIik3CYpOw2CccBi532l5VJt_jP5EGgG-B99Ka9T86MZlP73_l37THiFk</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Li, Yijia</creator><creator>Tian, Ruizhen</creator><creator>Zou, Yingping</creator><creator>Wang, Tingting</creator><creator>Liu, Junqiu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1608-7908</orcidid></search><sort><creationdate>20241126</creationdate><title>Strategies and Applications for Supramolecular Protein Self‐Assembly</title><author>Li, Yijia ; Tian, Ruizhen ; Zou, Yingping ; Wang, Tingting ; Liu, Junqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assemblies</topic><topic>Biomaterial</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Electrostatic properties</topic><topic>Functional materials</topic><topic>Gene polymorphism</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Polymorphism</topic><topic>Protein nanostructure</topic><topic>Protein self-assembly</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Self-assembly</topic><topic>Static Electricity</topic><topic>Structure-function relationships</topic><topic>Supramolecular assembly strategy</topic><topic>Supramolecular chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yijia</creatorcontrib><creatorcontrib>Tian, Ruizhen</creatorcontrib><creatorcontrib>Zou, Yingping</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yijia</au><au>Tian, Ruizhen</au><au>Zou, Yingping</au><au>Wang, Tingting</au><au>Liu, Junqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies and Applications for Supramolecular Protein Self‐Assembly</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>30</volume><issue>66</issue><spage>e202402624</spage><epage>n/a</epage><pages>e202402624-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self‐assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self‐assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host‐guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies′ unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio‐delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected.
Supramolecular hierarchical protein self‐assembly is vital for constructing diverse and functional biomaterials, as well as to explore information exchange and cooperation between proteins. In this paper, the classical supramolecular protein assembly construction strategies and the flexible regulaion of assemblies are summarized and analyzed. In addition, the applications and the enormous potential and significance of supramolecular protein materials are also reviewed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39158515</pmid><doi>10.1002/chem.202402624</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1608-7908</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2024-11, Vol.30 (66), p.e202402624-n/a |
issn | 0947-6539 1521-3765 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_3094473258 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Assemblies Biomaterial Biomaterials Biomedical materials Electrostatic properties Functional materials Gene polymorphism Hydrogels - chemistry Hydrogen Bonding Hydrophobic and Hydrophilic Interactions Hydrophobicity Polymorphism Protein nanostructure Protein self-assembly Proteins Proteins - chemistry Self-assembly Static Electricity Structure-function relationships Supramolecular assembly strategy Supramolecular chemistry |
title | Strategies and Applications for Supramolecular Protein Self‐Assembly |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20and%20Applications%20for%20Supramolecular%20Protein%20Self%E2%80%90Assembly&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Li,%20Yijia&rft.date=2024-11-26&rft.volume=30&rft.issue=66&rft.spage=e202402624&rft.epage=n/a&rft.pages=e202402624-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202402624&rft_dat=%3Cproquest_cross%3E3094473258%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132773600&rft_id=info:pmid/39158515&rfr_iscdi=true |