Loading…

Strategies and Applications for Supramolecular Protein Self‐Assembly

Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomate...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2024-11, Vol.30 (66), p.e202402624-n/a
Main Authors: Li, Yijia, Tian, Ruizhen, Zou, Yingping, Wang, Tingting, Liu, Junqiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3
container_end_page n/a
container_issue 66
container_start_page e202402624
container_title Chemistry : a European journal
container_volume 30
creator Li, Yijia
Tian, Ruizhen
Zou, Yingping
Wang, Tingting
Liu, Junqiu
description Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self‐assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self‐assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host‐guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies′ unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio‐delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected. Supramolecular hierarchical protein self‐assembly is vital for constructing diverse and functional biomaterials, as well as to explore information exchange and cooperation between proteins. In this paper, the classical supramolecular protein assembly construction strategies and the flexible regulaion of assemblies are summarized and analyzed. In addition, the applications and the enormous potential and significance of supramolecular protein materials are also reviewed.
doi_str_mv 10.1002/chem.202402624
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094473258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094473258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotl62LmXAjZupuUwyk2UprRUqCtV1SDIZnZK5mMwg3fkIPqNPYkprBTeuDge-851zfgAuEBwhCPGNfjXVCEOcQMxwcgCGiGIUk5TRQzCEPEljRgkfgBPvVxBCzgg5BgPCEc0ookMwW3ZOdualND6SdR6N29aWWnZlU_uoaFy07Fsnq8Ya3VvpokfXdKaso6WxxdfH59h7Uym7PgNHhbTenO_qKXieTZ8m83jxcHs3GS9ijWmWxCwpqFZFohg0muaZUZsOkzQluVZ5zjDjlGCVZVwTTSlHBVYswFClPFMFOQXXW2_rmrfe-E5UpdfGWlmbpveChJeTlIRlAb36g66a3tXhOkEQwWElgzBQoy2lXeO9M4VoXVlJtxYIik3CYpOw2CccBi532l5VJt_jP5EGgG-B99Ka9T86MZlP73_l37THiFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132773600</pqid></control><display><type>article</type><title>Strategies and Applications for Supramolecular Protein Self‐Assembly</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Li, Yijia ; Tian, Ruizhen ; Zou, Yingping ; Wang, Tingting ; Liu, Junqiu</creator><creatorcontrib>Li, Yijia ; Tian, Ruizhen ; Zou, Yingping ; Wang, Tingting ; Liu, Junqiu</creatorcontrib><description>Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self‐assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self‐assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host‐guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies′ unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio‐delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected. Supramolecular hierarchical protein self‐assembly is vital for constructing diverse and functional biomaterials, as well as to explore information exchange and cooperation between proteins. In this paper, the classical supramolecular protein assembly construction strategies and the flexible regulaion of assemblies are summarized and analyzed. In addition, the applications and the enormous potential and significance of supramolecular protein materials are also reviewed.</description><identifier>ISSN: 0947-6539</identifier><identifier>ISSN: 1521-3765</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202402624</identifier><identifier>PMID: 39158515</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assemblies ; Biomaterial ; Biomaterials ; Biomedical materials ; Electrostatic properties ; Functional materials ; Gene polymorphism ; Hydrogels - chemistry ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Polymorphism ; Protein nanostructure ; Protein self-assembly ; Proteins ; Proteins - chemistry ; Self-assembly ; Static Electricity ; Structure-function relationships ; Supramolecular assembly strategy ; Supramolecular chemistry</subject><ispartof>Chemistry : a European journal, 2024-11, Vol.30 (66), p.e202402624-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3</cites><orcidid>0000-0003-1608-7908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39158515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yijia</creatorcontrib><creatorcontrib>Tian, Ruizhen</creatorcontrib><creatorcontrib>Zou, Yingping</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><title>Strategies and Applications for Supramolecular Protein Self‐Assembly</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self‐assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self‐assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host‐guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies′ unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio‐delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected. Supramolecular hierarchical protein self‐assembly is vital for constructing diverse and functional biomaterials, as well as to explore information exchange and cooperation between proteins. In this paper, the classical supramolecular protein assembly construction strategies and the flexible regulaion of assemblies are summarized and analyzed. In addition, the applications and the enormous potential and significance of supramolecular protein materials are also reviewed.</description><subject>Assemblies</subject><subject>Biomaterial</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Electrostatic properties</subject><subject>Functional materials</subject><subject>Gene polymorphism</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Polymorphism</subject><subject>Protein nanostructure</subject><subject>Protein self-assembly</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Self-assembly</subject><subject>Static Electricity</subject><subject>Structure-function relationships</subject><subject>Supramolecular assembly strategy</subject><subject>Supramolecular chemistry</subject><issn>0947-6539</issn><issn>1521-3765</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMotl62LmXAjZupuUwyk2UprRUqCtV1SDIZnZK5mMwg3fkIPqNPYkprBTeuDge-851zfgAuEBwhCPGNfjXVCEOcQMxwcgCGiGIUk5TRQzCEPEljRgkfgBPvVxBCzgg5BgPCEc0ookMwW3ZOdualND6SdR6N29aWWnZlU_uoaFy07Fsnq8Ya3VvpokfXdKaso6WxxdfH59h7Uym7PgNHhbTenO_qKXieTZ8m83jxcHs3GS9ijWmWxCwpqFZFohg0muaZUZsOkzQluVZ5zjDjlGCVZVwTTSlHBVYswFClPFMFOQXXW2_rmrfe-E5UpdfGWlmbpveChJeTlIRlAb36g66a3tXhOkEQwWElgzBQoy2lXeO9M4VoXVlJtxYIik3CYpOw2CccBi532l5VJt_jP5EGgG-B99Ka9T86MZlP73_l37THiFk</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Li, Yijia</creator><creator>Tian, Ruizhen</creator><creator>Zou, Yingping</creator><creator>Wang, Tingting</creator><creator>Liu, Junqiu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1608-7908</orcidid></search><sort><creationdate>20241126</creationdate><title>Strategies and Applications for Supramolecular Protein Self‐Assembly</title><author>Li, Yijia ; Tian, Ruizhen ; Zou, Yingping ; Wang, Tingting ; Liu, Junqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assemblies</topic><topic>Biomaterial</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Electrostatic properties</topic><topic>Functional materials</topic><topic>Gene polymorphism</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Polymorphism</topic><topic>Protein nanostructure</topic><topic>Protein self-assembly</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Self-assembly</topic><topic>Static Electricity</topic><topic>Structure-function relationships</topic><topic>Supramolecular assembly strategy</topic><topic>Supramolecular chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yijia</creatorcontrib><creatorcontrib>Tian, Ruizhen</creatorcontrib><creatorcontrib>Zou, Yingping</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yijia</au><au>Tian, Ruizhen</au><au>Zou, Yingping</au><au>Wang, Tingting</au><au>Liu, Junqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies and Applications for Supramolecular Protein Self‐Assembly</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>30</volume><issue>66</issue><spage>e202402624</spage><epage>n/a</epage><pages>e202402624-n/a</pages><issn>0947-6539</issn><issn>1521-3765</issn><eissn>1521-3765</eissn><abstract>Supramolecular chemistry achieves higher‐order molecular self‐assembly through non‐covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a “bottom‐up” perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self‐assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self‐assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host‐guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies′ unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio‐delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected. Supramolecular hierarchical protein self‐assembly is vital for constructing diverse and functional biomaterials, as well as to explore information exchange and cooperation between proteins. In this paper, the classical supramolecular protein assembly construction strategies and the flexible regulaion of assemblies are summarized and analyzed. In addition, the applications and the enormous potential and significance of supramolecular protein materials are also reviewed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39158515</pmid><doi>10.1002/chem.202402624</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1608-7908</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2024-11, Vol.30 (66), p.e202402624-n/a
issn 0947-6539
1521-3765
1521-3765
language eng
recordid cdi_proquest_miscellaneous_3094473258
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Assemblies
Biomaterial
Biomaterials
Biomedical materials
Electrostatic properties
Functional materials
Gene polymorphism
Hydrogels - chemistry
Hydrogen Bonding
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Polymorphism
Protein nanostructure
Protein self-assembly
Proteins
Proteins - chemistry
Self-assembly
Static Electricity
Structure-function relationships
Supramolecular assembly strategy
Supramolecular chemistry
title Strategies and Applications for Supramolecular Protein Self‐Assembly
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20and%20Applications%20for%20Supramolecular%20Protein%20Self%E2%80%90Assembly&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Li,%20Yijia&rft.date=2024-11-26&rft.volume=30&rft.issue=66&rft.spage=e202402624&rft.epage=n/a&rft.pages=e202402624-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202402624&rft_dat=%3Cproquest_cross%3E3094473258%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2584-64f5cbf4b60ec5d8ebcbf423773dcbdd6269532b889c3c5591f2b660e0b798bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132773600&rft_id=info:pmid/39158515&rfr_iscdi=true