Loading…
Demystifying Trion Emission in CdSe Nanoplatelets
At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of...
Saved in:
Published in: | ACS nano 2024-09, Vol.18 (35), p.24523-24531 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583 |
container_end_page | 24531 |
container_issue | 35 |
container_start_page | 24523 |
container_title | ACS nano |
container_volume | 18 |
creator | Riesner, Maurizio Shabani, Farzan Zeylmans van Emmichoven, Levin Klein, Julian Delikanli, Savas Fainblat, Rachel Demir, Hilmi Volkan Bacher, Gerd |
description | At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps. |
doi_str_mv | 10.1021/acsnano.4c08776 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094820502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094820502</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqUws6GMSCitH0lsj6iUh1TBQJHYLD9RqsQpdjL03-OqgY3pnuE75957ALhGcI4gRgupo5e-mxcaMkqrEzBFnFQ5ZNXn6Z8u0QRcxLiFsKSMVudgQjgqeYHJFKAH2-5jX7t97b-yTag7n63aOsaDqH22NO82e00rdo3sbWP7eAnOnGyivRrnDHw8rjbL53z99vSyvF_nEiPa54hrZijFxFSscNYypBmi0hGnrebKMaWdIlJxZZBRhaEVpoWTRqlSQVsyMgO3x9xd6L4HG3uRztK2aaS33RAFgbxgGJYQJ3RxRHXoYgzWiV2oWxn2AkFx6EmMPYmxp-S4GcMH1Vrzx_8Wk4C7I5CcYtsNwadf_437Ae1QdH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094820502</pqid></control><display><type>article</type><title>Demystifying Trion Emission in CdSe Nanoplatelets</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Riesner, Maurizio ; Shabani, Farzan ; Zeylmans van Emmichoven, Levin ; Klein, Julian ; Delikanli, Savas ; Fainblat, Rachel ; Demir, Hilmi Volkan ; Bacher, Gerd</creator><creatorcontrib>Riesner, Maurizio ; Shabani, Farzan ; Zeylmans van Emmichoven, Levin ; Klein, Julian ; Delikanli, Savas ; Fainblat, Rachel ; Demir, Hilmi Volkan ; Bacher, Gerd</creatorcontrib><description>At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c08776</identifier><identifier>PMID: 39159423</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-09, Vol.18 (35), p.24523-24531</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583</cites><orcidid>0000-0003-2349-6953 ; 0000-0002-9488-2563 ; 0000-0003-2174-5960 ; 0009-0007-1193-3059 ; 0000-0001-8419-2158 ; 0000-0002-0613-8014 ; 0000-0003-1793-112X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39159423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riesner, Maurizio</creatorcontrib><creatorcontrib>Shabani, Farzan</creatorcontrib><creatorcontrib>Zeylmans van Emmichoven, Levin</creatorcontrib><creatorcontrib>Klein, Julian</creatorcontrib><creatorcontrib>Delikanli, Savas</creatorcontrib><creatorcontrib>Fainblat, Rachel</creatorcontrib><creatorcontrib>Demir, Hilmi Volkan</creatorcontrib><creatorcontrib>Bacher, Gerd</creatorcontrib><title>Demystifying Trion Emission in CdSe Nanoplatelets</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqUws6GMSCitH0lsj6iUh1TBQJHYLD9RqsQpdjL03-OqgY3pnuE75957ALhGcI4gRgupo5e-mxcaMkqrEzBFnFQ5ZNXn6Z8u0QRcxLiFsKSMVudgQjgqeYHJFKAH2-5jX7t97b-yTag7n63aOsaDqH22NO82e00rdo3sbWP7eAnOnGyivRrnDHw8rjbL53z99vSyvF_nEiPa54hrZijFxFSscNYypBmi0hGnrebKMaWdIlJxZZBRhaEVpoWTRqlSQVsyMgO3x9xd6L4HG3uRztK2aaS33RAFgbxgGJYQJ3RxRHXoYgzWiV2oWxn2AkFx6EmMPYmxp-S4GcMH1Vrzx_8Wk4C7I5CcYtsNwadf_437Ae1QdH4</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Riesner, Maurizio</creator><creator>Shabani, Farzan</creator><creator>Zeylmans van Emmichoven, Levin</creator><creator>Klein, Julian</creator><creator>Delikanli, Savas</creator><creator>Fainblat, Rachel</creator><creator>Demir, Hilmi Volkan</creator><creator>Bacher, Gerd</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2349-6953</orcidid><orcidid>https://orcid.org/0000-0002-9488-2563</orcidid><orcidid>https://orcid.org/0000-0003-2174-5960</orcidid><orcidid>https://orcid.org/0009-0007-1193-3059</orcidid><orcidid>https://orcid.org/0000-0001-8419-2158</orcidid><orcidid>https://orcid.org/0000-0002-0613-8014</orcidid><orcidid>https://orcid.org/0000-0003-1793-112X</orcidid></search><sort><creationdate>20240903</creationdate><title>Demystifying Trion Emission in CdSe Nanoplatelets</title><author>Riesner, Maurizio ; Shabani, Farzan ; Zeylmans van Emmichoven, Levin ; Klein, Julian ; Delikanli, Savas ; Fainblat, Rachel ; Demir, Hilmi Volkan ; Bacher, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riesner, Maurizio</creatorcontrib><creatorcontrib>Shabani, Farzan</creatorcontrib><creatorcontrib>Zeylmans van Emmichoven, Levin</creatorcontrib><creatorcontrib>Klein, Julian</creatorcontrib><creatorcontrib>Delikanli, Savas</creatorcontrib><creatorcontrib>Fainblat, Rachel</creatorcontrib><creatorcontrib>Demir, Hilmi Volkan</creatorcontrib><creatorcontrib>Bacher, Gerd</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riesner, Maurizio</au><au>Shabani, Farzan</au><au>Zeylmans van Emmichoven, Levin</au><au>Klein, Julian</au><au>Delikanli, Savas</au><au>Fainblat, Rachel</au><au>Demir, Hilmi Volkan</au><au>Bacher, Gerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demystifying Trion Emission in CdSe Nanoplatelets</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-09-03</date><risdate>2024</risdate><volume>18</volume><issue>35</issue><spage>24523</spage><epage>24531</epage><pages>24523-24531</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39159423</pmid><doi>10.1021/acsnano.4c08776</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2349-6953</orcidid><orcidid>https://orcid.org/0000-0002-9488-2563</orcidid><orcidid>https://orcid.org/0000-0003-2174-5960</orcidid><orcidid>https://orcid.org/0009-0007-1193-3059</orcidid><orcidid>https://orcid.org/0000-0001-8419-2158</orcidid><orcidid>https://orcid.org/0000-0002-0613-8014</orcidid><orcidid>https://orcid.org/0000-0003-1793-112X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-09, Vol.18 (35), p.24523-24531 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3094820502 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Demystifying Trion Emission in CdSe Nanoplatelets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demystifying%20Trion%20Emission%20in%20CdSe%20Nanoplatelets&rft.jtitle=ACS%20nano&rft.au=Riesner,%20Maurizio&rft.date=2024-09-03&rft.volume=18&rft.issue=35&rft.spage=24523&rft.epage=24531&rft.pages=24523-24531&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c08776&rft_dat=%3Cproquest_cross%3E3094820502%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094820502&rft_id=info:pmid/39159423&rfr_iscdi=true |