Loading…

Demystifying Trion Emission in CdSe Nanoplatelets

At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2024-09, Vol.18 (35), p.24523-24531
Main Authors: Riesner, Maurizio, Shabani, Farzan, Zeylmans van Emmichoven, Levin, Klein, Julian, Delikanli, Savas, Fainblat, Rachel, Demir, Hilmi Volkan, Bacher, Gerd
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583
container_end_page 24531
container_issue 35
container_start_page 24523
container_title ACS nano
container_volume 18
creator Riesner, Maurizio
Shabani, Farzan
Zeylmans van Emmichoven, Levin
Klein, Julian
Delikanli, Savas
Fainblat, Rachel
Demir, Hilmi Volkan
Bacher, Gerd
description At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps.
doi_str_mv 10.1021/acsnano.4c08776
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094820502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094820502</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqUws6GMSCitH0lsj6iUh1TBQJHYLD9RqsQpdjL03-OqgY3pnuE75957ALhGcI4gRgupo5e-mxcaMkqrEzBFnFQ5ZNXn6Z8u0QRcxLiFsKSMVudgQjgqeYHJFKAH2-5jX7t97b-yTag7n63aOsaDqH22NO82e00rdo3sbWP7eAnOnGyivRrnDHw8rjbL53z99vSyvF_nEiPa54hrZijFxFSscNYypBmi0hGnrebKMaWdIlJxZZBRhaEVpoWTRqlSQVsyMgO3x9xd6L4HG3uRztK2aaS33RAFgbxgGJYQJ3RxRHXoYgzWiV2oWxn2AkFx6EmMPYmxp-S4GcMH1Vrzx_8Wk4C7I5CcYtsNwadf_437Ae1QdH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094820502</pqid></control><display><type>article</type><title>Demystifying Trion Emission in CdSe Nanoplatelets</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Riesner, Maurizio ; Shabani, Farzan ; Zeylmans van Emmichoven, Levin ; Klein, Julian ; Delikanli, Savas ; Fainblat, Rachel ; Demir, Hilmi Volkan ; Bacher, Gerd</creator><creatorcontrib>Riesner, Maurizio ; Shabani, Farzan ; Zeylmans van Emmichoven, Levin ; Klein, Julian ; Delikanli, Savas ; Fainblat, Rachel ; Demir, Hilmi Volkan ; Bacher, Gerd</creatorcontrib><description>At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c08776</identifier><identifier>PMID: 39159423</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-09, Vol.18 (35), p.24523-24531</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583</cites><orcidid>0000-0003-2349-6953 ; 0000-0002-9488-2563 ; 0000-0003-2174-5960 ; 0009-0007-1193-3059 ; 0000-0001-8419-2158 ; 0000-0002-0613-8014 ; 0000-0003-1793-112X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39159423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riesner, Maurizio</creatorcontrib><creatorcontrib>Shabani, Farzan</creatorcontrib><creatorcontrib>Zeylmans van Emmichoven, Levin</creatorcontrib><creatorcontrib>Klein, Julian</creatorcontrib><creatorcontrib>Delikanli, Savas</creatorcontrib><creatorcontrib>Fainblat, Rachel</creatorcontrib><creatorcontrib>Demir, Hilmi Volkan</creatorcontrib><creatorcontrib>Bacher, Gerd</creatorcontrib><title>Demystifying Trion Emission in CdSe Nanoplatelets</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqUws6GMSCitH0lsj6iUh1TBQJHYLD9RqsQpdjL03-OqgY3pnuE75957ALhGcI4gRgupo5e-mxcaMkqrEzBFnFQ5ZNXn6Z8u0QRcxLiFsKSMVudgQjgqeYHJFKAH2-5jX7t97b-yTag7n63aOsaDqH22NO82e00rdo3sbWP7eAnOnGyivRrnDHw8rjbL53z99vSyvF_nEiPa54hrZijFxFSscNYypBmi0hGnrebKMaWdIlJxZZBRhaEVpoWTRqlSQVsyMgO3x9xd6L4HG3uRztK2aaS33RAFgbxgGJYQJ3RxRHXoYgzWiV2oWxn2AkFx6EmMPYmxp-S4GcMH1Vrzx_8Wk4C7I5CcYtsNwadf_437Ae1QdH4</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Riesner, Maurizio</creator><creator>Shabani, Farzan</creator><creator>Zeylmans van Emmichoven, Levin</creator><creator>Klein, Julian</creator><creator>Delikanli, Savas</creator><creator>Fainblat, Rachel</creator><creator>Demir, Hilmi Volkan</creator><creator>Bacher, Gerd</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2349-6953</orcidid><orcidid>https://orcid.org/0000-0002-9488-2563</orcidid><orcidid>https://orcid.org/0000-0003-2174-5960</orcidid><orcidid>https://orcid.org/0009-0007-1193-3059</orcidid><orcidid>https://orcid.org/0000-0001-8419-2158</orcidid><orcidid>https://orcid.org/0000-0002-0613-8014</orcidid><orcidid>https://orcid.org/0000-0003-1793-112X</orcidid></search><sort><creationdate>20240903</creationdate><title>Demystifying Trion Emission in CdSe Nanoplatelets</title><author>Riesner, Maurizio ; Shabani, Farzan ; Zeylmans van Emmichoven, Levin ; Klein, Julian ; Delikanli, Savas ; Fainblat, Rachel ; Demir, Hilmi Volkan ; Bacher, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riesner, Maurizio</creatorcontrib><creatorcontrib>Shabani, Farzan</creatorcontrib><creatorcontrib>Zeylmans van Emmichoven, Levin</creatorcontrib><creatorcontrib>Klein, Julian</creatorcontrib><creatorcontrib>Delikanli, Savas</creatorcontrib><creatorcontrib>Fainblat, Rachel</creatorcontrib><creatorcontrib>Demir, Hilmi Volkan</creatorcontrib><creatorcontrib>Bacher, Gerd</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riesner, Maurizio</au><au>Shabani, Farzan</au><au>Zeylmans van Emmichoven, Levin</au><au>Klein, Julian</au><au>Delikanli, Savas</au><au>Fainblat, Rachel</au><au>Demir, Hilmi Volkan</au><au>Bacher, Gerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demystifying Trion Emission in CdSe Nanoplatelets</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-09-03</date><risdate>2024</risdate><volume>18</volume><issue>35</issue><spage>24523</spage><epage>24531</epage><pages>24523-24531</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>At cryogenic temperatures, the photoluminescence spectrum of CdSe nanoplatelets (NPLs) usually consists of multiple emission lines, the origin of which is still under debate. While there seems to be consensus that both neutral excitons and trions contribute to the NPL emission, the prominent role of trions is rather puzzling. In this work, we demonstrate that Förster resonant energy transfer in stacks of NPLs combined with hole trap states in specific NPLs within the stack trigger trion formation, while single NPL spectra are dominated by neutral excitonic emission. This interpretation is verified by implementing copper (Cu+) dopants into the lattice as intentional hole traps. Trion emission gets strongly enhanced, and due to the large amount of hole trapping Cu+ states in each single NPL, trion formation does not necessarily require stacking of NPLs. Thus, the ratio between trion and neutral exciton emission can be controlled by either changing the amount of stacked NPLs during sample preparation or implementing copper dopants into the lattice which act as additional hole traps.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39159423</pmid><doi>10.1021/acsnano.4c08776</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2349-6953</orcidid><orcidid>https://orcid.org/0000-0002-9488-2563</orcidid><orcidid>https://orcid.org/0000-0003-2174-5960</orcidid><orcidid>https://orcid.org/0009-0007-1193-3059</orcidid><orcidid>https://orcid.org/0000-0001-8419-2158</orcidid><orcidid>https://orcid.org/0000-0002-0613-8014</orcidid><orcidid>https://orcid.org/0000-0003-1793-112X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-09, Vol.18 (35), p.24523-24531
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3094820502
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Demystifying Trion Emission in CdSe Nanoplatelets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demystifying%20Trion%20Emission%20in%20CdSe%20Nanoplatelets&rft.jtitle=ACS%20nano&rft.au=Riesner,%20Maurizio&rft.date=2024-09-03&rft.volume=18&rft.issue=35&rft.spage=24523&rft.epage=24531&rft.pages=24523-24531&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c08776&rft_dat=%3Cproquest_cross%3E3094820502%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a217t-19c8d7723d684fee81c817af3fcec9bf8bcfb3ab9bd1db4d76274fadbb5b0e583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094820502&rft_id=info:pmid/39159423&rfr_iscdi=true