Loading…

On the grain boundary charge transport in p-type polycrystalline nanoribbon transistors

Grain boundaries (GB) profoundly influence charge transport, and their localized potential barrier with a high density of defect states plays a crucial role in polycrystalline materials. There are a couple of models to estimate the density of states (DoS) of nanostructured materials in field-effect...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2024-09, Vol.16 (35), p.16611-16621
Main Authors: Sarkar, Prakash, Muhammed Ali, A. V, Ghorai, Gurupada, Pradhan, Prabhanjan, Patra, Biplab K, Sagade, Abhay A, Rao, K. D. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c226t-de1510bea81f36d2fff53f43b02890b37306c1a2de8c9e19e64142d22aedbff03
container_end_page 16621
container_issue 35
container_start_page 16611
container_title Nanoscale
container_volume 16
creator Sarkar, Prakash
Muhammed Ali, A. V
Ghorai, Gurupada
Pradhan, Prabhanjan
Patra, Biplab K
Sagade, Abhay A
Rao, K. D. M
description Grain boundaries (GB) profoundly influence charge transport, and their localized potential barrier with a high density of defect states plays a crucial role in polycrystalline materials. There are a couple of models to estimate the density of states (DoS) of nanostructured materials in field-effect transistors (FETs) that probe interface traps between the semiconductor and dielectric but not at the grain boundaries. Here, we report on utilizing Levinson's and Seto's models of grain boundary transport and correlate them with the temperature-dependent hopping transport in copper iodide (CuI) polycrystalline nanoribbon (PNR) FETs. Experimentally, PNRs are obtained by e-beam lithography and thermal evaporation of CuI. To investigate the impact of GB, the devices are fabricated with different channel aspect ratios by varying widths (80, 260, and 570 nm) and lengths (20 to 90 μm). Owing to the high hole concentration, PNR FETs operate in depletion mode at 300 K. At various low temperatures (80-300 K), the figures-of-merits of FETs are estimated to understand device performance. We determine GB barrier heights, activation energy, and density of GB trap states and find equivalence between the two models. Furthermore, we calculate temperature-dependent hopping and trap-limited transport parameters to obtain DoS at the Fermi energy, trapped and free charge carrier density, localization length, hopping distance, hopping energy, etc . at various channel lengths. Based on this quantitative analysis, we propose a channel length-dependent GB barrier height variation due to the in-plane electric field and elucidate CuI energy band levels. Quantitative analysis of grain boundaries and its influence on hole conduction through nanoribbon transistors is carried out by temperature dependent electrical measurements and analytical charge transport models.
doi_str_mv 10.1039/d4nr01873g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3094826644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103131984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-de1510bea81f36d2fff53f43b02890b37306c1a2de8c9e19e64142d22aedbff03</originalsourceid><addsrcrecordid>eNpd0UFLwzAUwPEgipvTi3el4EWEapKXZc1Rpk5hOBDFY0naZOvokpq0h357OzsneErg_XiEfxA6J_iWYBB3ObMek2QCywM0pJjhGGBCD_d3zgboJIQ1xlwAh2M0AEE4TTAfos-FjeqVjpZeFjZSrrG59G2UraRf6qj20obK-TrqhlVct5WOKle2mW9DLcuysDqy0jpfKOVsz4tQOx9O0ZGRZdBnu3OEPp4e36fP8Xwxe5nez-OMUl7HuSZjgpWWCTHAc2qMGYNhoDBNBFYwAcwzImmuk0xoIjRnhNGcUqlzZQyGEbru91befTU61OmmCJkuS2m1a0IKWLCEcs5YR6_-0bVrvO1el0LXkQARyVbd9CrzLgSvTVr5YtM1SQlOt7nTB_b69pN71uHL3cpGbXS-p799O3DRAx-y_fTvv-Abd1CFWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103131984</pqid></control><display><type>article</type><title>On the grain boundary charge transport in p-type polycrystalline nanoribbon transistors</title><source>Royal Society of Chemistry</source><creator>Sarkar, Prakash ; Muhammed Ali, A. V ; Ghorai, Gurupada ; Pradhan, Prabhanjan ; Patra, Biplab K ; Sagade, Abhay A ; Rao, K. D. M</creator><creatorcontrib>Sarkar, Prakash ; Muhammed Ali, A. V ; Ghorai, Gurupada ; Pradhan, Prabhanjan ; Patra, Biplab K ; Sagade, Abhay A ; Rao, K. D. M</creatorcontrib><description>Grain boundaries (GB) profoundly influence charge transport, and their localized potential barrier with a high density of defect states plays a crucial role in polycrystalline materials. There are a couple of models to estimate the density of states (DoS) of nanostructured materials in field-effect transistors (FETs) that probe interface traps between the semiconductor and dielectric but not at the grain boundaries. Here, we report on utilizing Levinson's and Seto's models of grain boundary transport and correlate them with the temperature-dependent hopping transport in copper iodide (CuI) polycrystalline nanoribbon (PNR) FETs. Experimentally, PNRs are obtained by e-beam lithography and thermal evaporation of CuI. To investigate the impact of GB, the devices are fabricated with different channel aspect ratios by varying widths (80, 260, and 570 nm) and lengths (20 to 90 μm). Owing to the high hole concentration, PNR FETs operate in depletion mode at 300 K. At various low temperatures (80-300 K), the figures-of-merits of FETs are estimated to understand device performance. We determine GB barrier heights, activation energy, and density of GB trap states and find equivalence between the two models. Furthermore, we calculate temperature-dependent hopping and trap-limited transport parameters to obtain DoS at the Fermi energy, trapped and free charge carrier density, localization length, hopping distance, hopping energy, etc . at various channel lengths. Based on this quantitative analysis, we propose a channel length-dependent GB barrier height variation due to the in-plane electric field and elucidate CuI energy band levels. Quantitative analysis of grain boundaries and its influence on hole conduction through nanoribbon transistors is carried out by temperature dependent electrical measurements and analytical charge transport models.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr01873g</identifier><identifier>PMID: 39162806</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aspect ratio ; Carrier density ; Charge materials ; Charge transport ; Crystal defects ; Current carriers ; Density of states ; Electric fields ; Electron beams ; Energy bands ; Field effect transistors ; Grain boundaries ; Low temperature ; Nanoribbons ; Nanostructured materials ; Polycrystals ; Potential barriers ; Semiconductor devices ; Temperature dependence ; Transistors</subject><ispartof>Nanoscale, 2024-09, Vol.16 (35), p.16611-16621</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-de1510bea81f36d2fff53f43b02890b37306c1a2de8c9e19e64142d22aedbff03</cites><orcidid>0000-0003-0592-4344 ; 0000-0002-3299-7103 ; 0000-0002-8930-8452 ; 0000-0002-7599-8827 ; 0000-0002-5966-3306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39162806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkar, Prakash</creatorcontrib><creatorcontrib>Muhammed Ali, A. V</creatorcontrib><creatorcontrib>Ghorai, Gurupada</creatorcontrib><creatorcontrib>Pradhan, Prabhanjan</creatorcontrib><creatorcontrib>Patra, Biplab K</creatorcontrib><creatorcontrib>Sagade, Abhay A</creatorcontrib><creatorcontrib>Rao, K. D. M</creatorcontrib><title>On the grain boundary charge transport in p-type polycrystalline nanoribbon transistors</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Grain boundaries (GB) profoundly influence charge transport, and their localized potential barrier with a high density of defect states plays a crucial role in polycrystalline materials. There are a couple of models to estimate the density of states (DoS) of nanostructured materials in field-effect transistors (FETs) that probe interface traps between the semiconductor and dielectric but not at the grain boundaries. Here, we report on utilizing Levinson's and Seto's models of grain boundary transport and correlate them with the temperature-dependent hopping transport in copper iodide (CuI) polycrystalline nanoribbon (PNR) FETs. Experimentally, PNRs are obtained by e-beam lithography and thermal evaporation of CuI. To investigate the impact of GB, the devices are fabricated with different channel aspect ratios by varying widths (80, 260, and 570 nm) and lengths (20 to 90 μm). Owing to the high hole concentration, PNR FETs operate in depletion mode at 300 K. At various low temperatures (80-300 K), the figures-of-merits of FETs are estimated to understand device performance. We determine GB barrier heights, activation energy, and density of GB trap states and find equivalence between the two models. Furthermore, we calculate temperature-dependent hopping and trap-limited transport parameters to obtain DoS at the Fermi energy, trapped and free charge carrier density, localization length, hopping distance, hopping energy, etc . at various channel lengths. Based on this quantitative analysis, we propose a channel length-dependent GB barrier height variation due to the in-plane electric field and elucidate CuI energy band levels. Quantitative analysis of grain boundaries and its influence on hole conduction through nanoribbon transistors is carried out by temperature dependent electrical measurements and analytical charge transport models.</description><subject>Aspect ratio</subject><subject>Carrier density</subject><subject>Charge materials</subject><subject>Charge transport</subject><subject>Crystal defects</subject><subject>Current carriers</subject><subject>Density of states</subject><subject>Electric fields</subject><subject>Electron beams</subject><subject>Energy bands</subject><subject>Field effect transistors</subject><subject>Grain boundaries</subject><subject>Low temperature</subject><subject>Nanoribbons</subject><subject>Nanostructured materials</subject><subject>Polycrystals</subject><subject>Potential barriers</subject><subject>Semiconductor devices</subject><subject>Temperature dependence</subject><subject>Transistors</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0UFLwzAUwPEgipvTi3el4EWEapKXZc1Rpk5hOBDFY0naZOvokpq0h357OzsneErg_XiEfxA6J_iWYBB3ObMek2QCywM0pJjhGGBCD_d3zgboJIQ1xlwAh2M0AEE4TTAfos-FjeqVjpZeFjZSrrG59G2UraRf6qj20obK-TrqhlVct5WOKle2mW9DLcuysDqy0jpfKOVsz4tQOx9O0ZGRZdBnu3OEPp4e36fP8Xwxe5nez-OMUl7HuSZjgpWWCTHAc2qMGYNhoDBNBFYwAcwzImmuk0xoIjRnhNGcUqlzZQyGEbru91befTU61OmmCJkuS2m1a0IKWLCEcs5YR6_-0bVrvO1el0LXkQARyVbd9CrzLgSvTVr5YtM1SQlOt7nTB_b69pN71uHL3cpGbXS-p799O3DRAx-y_fTvv-Abd1CFWA</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Sarkar, Prakash</creator><creator>Muhammed Ali, A. V</creator><creator>Ghorai, Gurupada</creator><creator>Pradhan, Prabhanjan</creator><creator>Patra, Biplab K</creator><creator>Sagade, Abhay A</creator><creator>Rao, K. D. M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0592-4344</orcidid><orcidid>https://orcid.org/0000-0002-3299-7103</orcidid><orcidid>https://orcid.org/0000-0002-8930-8452</orcidid><orcidid>https://orcid.org/0000-0002-7599-8827</orcidid><orcidid>https://orcid.org/0000-0002-5966-3306</orcidid></search><sort><creationdate>20240912</creationdate><title>On the grain boundary charge transport in p-type polycrystalline nanoribbon transistors</title><author>Sarkar, Prakash ; Muhammed Ali, A. V ; Ghorai, Gurupada ; Pradhan, Prabhanjan ; Patra, Biplab K ; Sagade, Abhay A ; Rao, K. D. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-de1510bea81f36d2fff53f43b02890b37306c1a2de8c9e19e64142d22aedbff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aspect ratio</topic><topic>Carrier density</topic><topic>Charge materials</topic><topic>Charge transport</topic><topic>Crystal defects</topic><topic>Current carriers</topic><topic>Density of states</topic><topic>Electric fields</topic><topic>Electron beams</topic><topic>Energy bands</topic><topic>Field effect transistors</topic><topic>Grain boundaries</topic><topic>Low temperature</topic><topic>Nanoribbons</topic><topic>Nanostructured materials</topic><topic>Polycrystals</topic><topic>Potential barriers</topic><topic>Semiconductor devices</topic><topic>Temperature dependence</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Prakash</creatorcontrib><creatorcontrib>Muhammed Ali, A. V</creatorcontrib><creatorcontrib>Ghorai, Gurupada</creatorcontrib><creatorcontrib>Pradhan, Prabhanjan</creatorcontrib><creatorcontrib>Patra, Biplab K</creatorcontrib><creatorcontrib>Sagade, Abhay A</creatorcontrib><creatorcontrib>Rao, K. D. M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Prakash</au><au>Muhammed Ali, A. V</au><au>Ghorai, Gurupada</au><au>Pradhan, Prabhanjan</au><au>Patra, Biplab K</au><au>Sagade, Abhay A</au><au>Rao, K. D. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the grain boundary charge transport in p-type polycrystalline nanoribbon transistors</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-09-12</date><risdate>2024</risdate><volume>16</volume><issue>35</issue><spage>16611</spage><epage>16621</epage><pages>16611-16621</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>Grain boundaries (GB) profoundly influence charge transport, and their localized potential barrier with a high density of defect states plays a crucial role in polycrystalline materials. There are a couple of models to estimate the density of states (DoS) of nanostructured materials in field-effect transistors (FETs) that probe interface traps between the semiconductor and dielectric but not at the grain boundaries. Here, we report on utilizing Levinson's and Seto's models of grain boundary transport and correlate them with the temperature-dependent hopping transport in copper iodide (CuI) polycrystalline nanoribbon (PNR) FETs. Experimentally, PNRs are obtained by e-beam lithography and thermal evaporation of CuI. To investigate the impact of GB, the devices are fabricated with different channel aspect ratios by varying widths (80, 260, and 570 nm) and lengths (20 to 90 μm). Owing to the high hole concentration, PNR FETs operate in depletion mode at 300 K. At various low temperatures (80-300 K), the figures-of-merits of FETs are estimated to understand device performance. We determine GB barrier heights, activation energy, and density of GB trap states and find equivalence between the two models. Furthermore, we calculate temperature-dependent hopping and trap-limited transport parameters to obtain DoS at the Fermi energy, trapped and free charge carrier density, localization length, hopping distance, hopping energy, etc . at various channel lengths. Based on this quantitative analysis, we propose a channel length-dependent GB barrier height variation due to the in-plane electric field and elucidate CuI energy band levels. Quantitative analysis of grain boundaries and its influence on hole conduction through nanoribbon transistors is carried out by temperature dependent electrical measurements and analytical charge transport models.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39162806</pmid><doi>10.1039/d4nr01873g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0592-4344</orcidid><orcidid>https://orcid.org/0000-0002-3299-7103</orcidid><orcidid>https://orcid.org/0000-0002-8930-8452</orcidid><orcidid>https://orcid.org/0000-0002-7599-8827</orcidid><orcidid>https://orcid.org/0000-0002-5966-3306</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-09, Vol.16 (35), p.16611-16621
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_proquest_miscellaneous_3094826644
source Royal Society of Chemistry
subjects Aspect ratio
Carrier density
Charge materials
Charge transport
Crystal defects
Current carriers
Density of states
Electric fields
Electron beams
Energy bands
Field effect transistors
Grain boundaries
Low temperature
Nanoribbons
Nanostructured materials
Polycrystals
Potential barriers
Semiconductor devices
Temperature dependence
Transistors
title On the grain boundary charge transport in p-type polycrystalline nanoribbon transistors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20grain%20boundary%20charge%20transport%20in%20p-type%20polycrystalline%20nanoribbon%20transistors&rft.jtitle=Nanoscale&rft.au=Sarkar,%20Prakash&rft.date=2024-09-12&rft.volume=16&rft.issue=35&rft.spage=16611&rft.epage=16621&rft.pages=16611-16621&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr01873g&rft_dat=%3Cproquest_cross%3E3103131984%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c226t-de1510bea81f36d2fff53f43b02890b37306c1a2de8c9e19e64142d22aedbff03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103131984&rft_id=info:pmid/39162806&rfr_iscdi=true