Loading…
Hyperelasticity with softening for modeling materials failure
Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain...
Saved in:
Published in: | Journal of the mechanics and physics of solids 2007-10, Vol.55 (10), p.2237-2264 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513 |
---|---|
cites | |
container_end_page | 2264 |
container_issue | 10 |
container_start_page | 2237 |
container_title | Journal of the mechanics and physics of solids |
container_volume | 55 |
creator | Volokh, K.Y. |
description | Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain energy—the critical failure energy, which can be interpreted as a failure constant characterizing the material ‘toughness’. We show that the critical failure energy controls materials softening. The softening can enrich any existing model of the intact material with a failure description. We demonstrate the efficiency of the softening hyperelasticity approach on a variety of analytically tractable boundary value problems with a variety of material models. The proposed softening hyperelasticity approach is a possible alternative to the simplistic pointwise failure criteria of strength of materials on the one hand and the sophisticated approach of damage mechanics involving internal variables on the other hand. |
doi_str_mv | 10.1016/j.jmps.2007.02.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30955783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509607000403</els_id><sourcerecordid>30955783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513</originalsourceid><addsrcrecordid>eNp9kE1LxDAURbNQcPz4A666ctf6kjZtCrqQQR1hwI2uQyZ50ZS2qUlGmX9vy7h29bhwz4V3CLmmUFCg9W1XdMMUCwbQFMAKoOyErAAYyzm09Rk5j7EDAA4NXZH7zWHCgL2KyWmXDtmPS59Z9Dbh6MaPzPqQDd5gv4RBJQxO9TGzyvX7gJfk1M4Rr_7uBXl_enxbb_Lt6_PL-mGb67KkKUc0om3Ebg41ai2Erapa2dZwVExQju2urithqGigUpXlpuGGNoZWuq0rTssLcnPcnYL_2mNMcnBRY9-rEf0-yhJazhtRzkV2LOrgYwxo5RTcoMJBUpCLHdnJxY5c7EhgcrYzQ3dHCOcXvh0GGbXDUaNxAXWSxrv_8F9on3CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30955783</pqid></control><display><type>article</type><title>Hyperelasticity with softening for modeling materials failure</title><source>Elsevier</source><creator>Volokh, K.Y.</creator><creatorcontrib>Volokh, K.Y.</creatorcontrib><description>Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain energy—the critical failure energy, which can be interpreted as a failure constant characterizing the material ‘toughness’. We show that the critical failure energy controls materials softening. The softening can enrich any existing model of the intact material with a failure description. We demonstrate the efficiency of the softening hyperelasticity approach on a variety of analytically tractable boundary value problems with a variety of material models. The proposed softening hyperelasticity approach is a possible alternative to the simplistic pointwise failure criteria of strength of materials on the one hand and the sophisticated approach of damage mechanics involving internal variables on the other hand.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2007.02.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biological material ; Finite strain ; Fracture ; Hyperelastic material ; Material failure</subject><ispartof>Journal of the mechanics and physics of solids, 2007-10, Vol.55 (10), p.2237-2264</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Volokh, K.Y.</creatorcontrib><title>Hyperelasticity with softening for modeling materials failure</title><title>Journal of the mechanics and physics of solids</title><description>Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain energy—the critical failure energy, which can be interpreted as a failure constant characterizing the material ‘toughness’. We show that the critical failure energy controls materials softening. The softening can enrich any existing model of the intact material with a failure description. We demonstrate the efficiency of the softening hyperelasticity approach on a variety of analytically tractable boundary value problems with a variety of material models. The proposed softening hyperelasticity approach is a possible alternative to the simplistic pointwise failure criteria of strength of materials on the one hand and the sophisticated approach of damage mechanics involving internal variables on the other hand.</description><subject>Biological material</subject><subject>Finite strain</subject><subject>Fracture</subject><subject>Hyperelastic material</subject><subject>Material failure</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURbNQcPz4A666ctf6kjZtCrqQQR1hwI2uQyZ50ZS2qUlGmX9vy7h29bhwz4V3CLmmUFCg9W1XdMMUCwbQFMAKoOyErAAYyzm09Rk5j7EDAA4NXZH7zWHCgL2KyWmXDtmPS59Z9Dbh6MaPzPqQDd5gv4RBJQxO9TGzyvX7gJfk1M4Rr_7uBXl_enxbb_Lt6_PL-mGb67KkKUc0om3Ebg41ai2Erapa2dZwVExQju2urithqGigUpXlpuGGNoZWuq0rTssLcnPcnYL_2mNMcnBRY9-rEf0-yhJazhtRzkV2LOrgYwxo5RTcoMJBUpCLHdnJxY5c7EhgcrYzQ3dHCOcXvh0GGbXDUaNxAXWSxrv_8F9on3CA</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Volokh, K.Y.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20071001</creationdate><title>Hyperelasticity with softening for modeling materials failure</title><author>Volokh, K.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological material</topic><topic>Finite strain</topic><topic>Fracture</topic><topic>Hyperelastic material</topic><topic>Material failure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volokh, K.Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volokh, K.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperelasticity with softening for modeling materials failure</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>55</volume><issue>10</issue><spage>2237</spage><epage>2264</epage><pages>2237-2264</pages><issn>0022-5096</issn><abstract>Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain energy—the critical failure energy, which can be interpreted as a failure constant characterizing the material ‘toughness’. We show that the critical failure energy controls materials softening. The softening can enrich any existing model of the intact material with a failure description. We demonstrate the efficiency of the softening hyperelasticity approach on a variety of analytically tractable boundary value problems with a variety of material models. The proposed softening hyperelasticity approach is a possible alternative to the simplistic pointwise failure criteria of strength of materials on the one hand and the sophisticated approach of damage mechanics involving internal variables on the other hand.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2007.02.012</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5096 |
ispartof | Journal of the mechanics and physics of solids, 2007-10, Vol.55 (10), p.2237-2264 |
issn | 0022-5096 |
language | eng |
recordid | cdi_proquest_miscellaneous_30955783 |
source | Elsevier |
subjects | Biological material Finite strain Fracture Hyperelastic material Material failure |
title | Hyperelasticity with softening for modeling materials failure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperelasticity%20with%20softening%20for%20modeling%20materials%20failure&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Volokh,%20K.Y.&rft.date=2007-10-01&rft.volume=55&rft.issue=10&rft.spage=2237&rft.epage=2264&rft.pages=2237-2264&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2007.02.012&rft_dat=%3Cproquest_cross%3E30955783%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30955783&rft_id=info:pmid/&rfr_iscdi=true |