Loading…

Hyperelasticity with softening for modeling materials failure

Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the mechanics and physics of solids 2007-10, Vol.55 (10), p.2237-2264
Main Author: Volokh, K.Y.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513
cites
container_end_page 2264
container_issue 10
container_start_page 2237
container_title Journal of the mechanics and physics of solids
container_volume 55
creator Volokh, K.Y.
description Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain energy—the critical failure energy, which can be interpreted as a failure constant characterizing the material ‘toughness’. We show that the critical failure energy controls materials softening. The softening can enrich any existing model of the intact material with a failure description. We demonstrate the efficiency of the softening hyperelasticity approach on a variety of analytically tractable boundary value problems with a variety of material models. The proposed softening hyperelasticity approach is a possible alternative to the simplistic pointwise failure criteria of strength of materials on the one hand and the sophisticated approach of damage mechanics involving internal variables on the other hand.
doi_str_mv 10.1016/j.jmps.2007.02.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30955783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509607000403</els_id><sourcerecordid>30955783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513</originalsourceid><addsrcrecordid>eNp9kE1LxDAURbNQcPz4A666ctf6kjZtCrqQQR1hwI2uQyZ50ZS2qUlGmX9vy7h29bhwz4V3CLmmUFCg9W1XdMMUCwbQFMAKoOyErAAYyzm09Rk5j7EDAA4NXZH7zWHCgL2KyWmXDtmPS59Z9Dbh6MaPzPqQDd5gv4RBJQxO9TGzyvX7gJfk1M4Rr_7uBXl_enxbb_Lt6_PL-mGb67KkKUc0om3Ebg41ai2Erapa2dZwVExQju2urithqGigUpXlpuGGNoZWuq0rTssLcnPcnYL_2mNMcnBRY9-rEf0-yhJazhtRzkV2LOrgYwxo5RTcoMJBUpCLHdnJxY5c7EhgcrYzQ3dHCOcXvh0GGbXDUaNxAXWSxrv_8F9on3CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30955783</pqid></control><display><type>article</type><title>Hyperelasticity with softening for modeling materials failure</title><source>Elsevier</source><creator>Volokh, K.Y.</creator><creatorcontrib>Volokh, K.Y.</creatorcontrib><description>Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain energy—the critical failure energy, which can be interpreted as a failure constant characterizing the material ‘toughness’. We show that the critical failure energy controls materials softening. The softening can enrich any existing model of the intact material with a failure description. We demonstrate the efficiency of the softening hyperelasticity approach on a variety of analytically tractable boundary value problems with a variety of material models. The proposed softening hyperelasticity approach is a possible alternative to the simplistic pointwise failure criteria of strength of materials on the one hand and the sophisticated approach of damage mechanics involving internal variables on the other hand.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/j.jmps.2007.02.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biological material ; Finite strain ; Fracture ; Hyperelastic material ; Material failure</subject><ispartof>Journal of the mechanics and physics of solids, 2007-10, Vol.55 (10), p.2237-2264</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Volokh, K.Y.</creatorcontrib><title>Hyperelasticity with softening for modeling materials failure</title><title>Journal of the mechanics and physics of solids</title><description>Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain energy—the critical failure energy, which can be interpreted as a failure constant characterizing the material ‘toughness’. We show that the critical failure energy controls materials softening. The softening can enrich any existing model of the intact material with a failure description. We demonstrate the efficiency of the softening hyperelasticity approach on a variety of analytically tractable boundary value problems with a variety of material models. The proposed softening hyperelasticity approach is a possible alternative to the simplistic pointwise failure criteria of strength of materials on the one hand and the sophisticated approach of damage mechanics involving internal variables on the other hand.</description><subject>Biological material</subject><subject>Finite strain</subject><subject>Fracture</subject><subject>Hyperelastic material</subject><subject>Material failure</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURbNQcPz4A666ctf6kjZtCrqQQR1hwI2uQyZ50ZS2qUlGmX9vy7h29bhwz4V3CLmmUFCg9W1XdMMUCwbQFMAKoOyErAAYyzm09Rk5j7EDAA4NXZH7zWHCgL2KyWmXDtmPS59Z9Dbh6MaPzPqQDd5gv4RBJQxO9TGzyvX7gJfk1M4Rr_7uBXl_enxbb_Lt6_PL-mGb67KkKUc0om3Ebg41ai2Erapa2dZwVExQju2urithqGigUpXlpuGGNoZWuq0rTssLcnPcnYL_2mNMcnBRY9-rEf0-yhJazhtRzkV2LOrgYwxo5RTcoMJBUpCLHdnJxY5c7EhgcrYzQ3dHCOcXvh0GGbXDUaNxAXWSxrv_8F9on3CA</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Volokh, K.Y.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20071001</creationdate><title>Hyperelasticity with softening for modeling materials failure</title><author>Volokh, K.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological material</topic><topic>Finite strain</topic><topic>Fracture</topic><topic>Hyperelastic material</topic><topic>Material failure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volokh, K.Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volokh, K.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperelasticity with softening for modeling materials failure</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>55</volume><issue>10</issue><spage>2237</spage><epage>2264</epage><pages>2237-2264</pages><issn>0022-5096</issn><abstract>Traditional hyperelastic models of materials allow for the unlimited increase of the strain energy under the strain increase. It is clear, however, that no real material can accumulate the energy unlimitedly sustaining large enough strains. In the present work, we introduce a limiter for the strain energy—the critical failure energy, which can be interpreted as a failure constant characterizing the material ‘toughness’. We show that the critical failure energy controls materials softening. The softening can enrich any existing model of the intact material with a failure description. We demonstrate the efficiency of the softening hyperelasticity approach on a variety of analytically tractable boundary value problems with a variety of material models. The proposed softening hyperelasticity approach is a possible alternative to the simplistic pointwise failure criteria of strength of materials on the one hand and the sophisticated approach of damage mechanics involving internal variables on the other hand.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2007.02.012</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2007-10, Vol.55 (10), p.2237-2264
issn 0022-5096
language eng
recordid cdi_proquest_miscellaneous_30955783
source Elsevier
subjects Biological material
Finite strain
Fracture
Hyperelastic material
Material failure
title Hyperelasticity with softening for modeling materials failure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperelasticity%20with%20softening%20for%20modeling%20materials%20failure&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Volokh,%20K.Y.&rft.date=2007-10-01&rft.volume=55&rft.issue=10&rft.spage=2237&rft.epage=2264&rft.pages=2237-2264&rft.issn=0022-5096&rft_id=info:doi/10.1016/j.jmps.2007.02.012&rft_dat=%3Cproquest_cross%3E30955783%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-eed8978b3316ecc88f446af9d5ea2815e9b6648d18704a4f5d75d17d14c964513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30955783&rft_id=info:pmid/&rfr_iscdi=true