Loading…

The effects of EDTA and Trichoderma species on growth and Cu uptake of maize (Zea mays) plants grown in a Cu-contaminated soil

Metal contamination in soil poses a significant environmental concern worldwide, necessitating effective remediation strategies such as phytoremediation. The present study investigated the effects of EDTA dosage (1.5 and 3 mmol kg −1 ) and two Trichoderma species ( T. harzianum and T. aureoviride )...

Full description

Saved in:
Bibliographic Details
Published in:Environmental geochemistry and health 2024-10, Vol.46 (10), p.372, Article 372
Main Authors: Hamidpour, Mohsen, Sadeghi, Razieh, Abbaszadeh-Dahaji, Payman, Alaei, Hossein, Shafigh, Mahshid, Omidvari, Mahtab, Kariman, Khalil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal contamination in soil poses a significant environmental concern worldwide, necessitating effective remediation strategies such as phytoremediation. The present study investigated the effects of EDTA dosage (1.5 and 3 mmol kg −1 ) and two Trichoderma species ( T. harzianum and T. aureoviride ) on copper (Cu) content and growth of maize plants grown in a Cu-contaminated soil, as well as Cu fractionation in the soil. In the absence of EDTA, only inoculation with T. harzianum led to a significant increase in shoot biomass. Combining fungal inoculum with EDTA only yielded a significant increase in shoot biomass when using T. aureoviride at a low EDTA rate, highlighting the interplay between fungal species and EDTA rates on plant growth. Results also indicated that EDTA application increased Cu bioavailability, enhancing Cu dissolution and root (not shoot) Cu concentrations. Conversely, inoculation with both Trichoderma species reduced Cu mobility and bioavailability in soil, thereby decreasing the shoot Cu concentrations of plants. When combined with EDTA, only application of T. harzianum resulted in an enhanced shoot Cu concentration, whereas combined application of T. aureoviride and EDTA did not make a significant change compared to the corresponding control (no fungal inoculation, no EDTA), possibly due to a lower compatibility of the T. aureoviride isolate with EDTA. Our results demonstrated that EDTA application, in both non-inoculated and inoculated treatments, increased Cu availability by facilitating its redistribution and transformation from less plant-available fractions (residual, Fe/Mn oxide-bound, and carbonate-bound) to the more readily plant-available forms (water-soluble and exchangeable fractions). In conclusion, although individual Trichoderma application proved beneficial for phytostabilization by reducing Cu content and mitigating Cu toxicity in plants, the combined application of EDTA and a compatible Trichoderma isolate (here, the T. harzianum isolate) holds promise for enhancing the phytoextraction capacity of plants. Although using maize has the advantage of being a food crop, to optimize phytoextraction, plant species with superior metal tolerance and phytoextraction capabilities should be selected, exceeding those of maize.
ISSN:0269-4042
1573-2983
1573-2983
DOI:10.1007/s10653-024-02159-0