Loading…

luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase

ABSTRACT Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2024-12, Vol.92 (12), p.1449-1458
Main Authors: Yudenko, Anna, Bazhenov, Sergey V., Aleksenko, Vladimir A., Goncharov, Ivan M., Semenov, Oleg, Remeeva, Alina, Nazarenko, Vera V., Kuznetsova, Elizaveta, Fomin, Vadim V., Konopleva, Maria N., Al Ebrahim, Rahaf, Sluchanko, Nikolai N., Ryzhykau, Yury, Semenov, Yury S., Kuklin, Alexander, Manukhov, Ilya V., Gushchin, Ivan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3
container_end_page 1458
container_issue 12
container_start_page 1449
container_title Proteins, structure, function, and bioinformatics
container_volume 92
creator Yudenko, Anna
Bazhenov, Sergey V.
Aleksenko, Vladimir A.
Goncharov, Ivan M.
Semenov, Oleg
Remeeva, Alina
Nazarenko, Vera V.
Kuznetsova, Elizaveta
Fomin, Vadim V.
Konopleva, Maria N.
Al Ebrahim, Rahaf
Sluchanko, Nikolai N.
Ryzhykau, Yury
Semenov, Yury S.
Kuklin, Alexander
Manukhov, Ilya V.
Gushchin, Ivan
description ABSTRACT Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium‐chain C4–C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (β/α)8 TIM‐barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264–293, which form a β‐hairpin or a coil in Vibrio harveyi LuxA, form α‐helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.
doi_str_mv 10.1002/prot.26739
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3095682021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095682021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9ACl5E6HyTtPlzHGNTYTIRPZe0facdbTOTFbdvb3TTgwdPCcmPB56HkHMKQwrAblbOrodMSK4PSJ-CljFQnhySPiglY56qtEdOvF8CgNBcHJMe11TS8NEnD3W3GUW32GI0dbaJJu3b9jVcthsTeVNXrQlPhS3RRyaadm2xrmxr6ujONrasGnRVEc26olqgMx5PydHC1B7P9ueAvEwnz-O7eDa_vR-PZnHBEqHjNGeKF7LUqRSSJUonVCItKVCq05JxQASR55KXLAEqeV7moRBXKShUQuR8QK52uaH6e4d-nTWVL7CuTYu28xkHnQrFgNFAL__Qpe1cqBAUZSkIYEwEdb1ThbPeO1xkK1c1xm0zCtnXyNnXyNn3yAFf7CO7vMHyl_6sGgDdgY-qxu0_Udnj0_x5F_oJXIiEsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125060226</pqid></control><display><type>article</type><title>luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yudenko, Anna ; Bazhenov, Sergey V. ; Aleksenko, Vladimir A. ; Goncharov, Ivan M. ; Semenov, Oleg ; Remeeva, Alina ; Nazarenko, Vera V. ; Kuznetsova, Elizaveta ; Fomin, Vadim V. ; Konopleva, Maria N. ; Al Ebrahim, Rahaf ; Sluchanko, Nikolai N. ; Ryzhykau, Yury ; Semenov, Yury S. ; Kuklin, Alexander ; Manukhov, Ilya V. ; Gushchin, Ivan</creator><creatorcontrib>Yudenko, Anna ; Bazhenov, Sergey V. ; Aleksenko, Vladimir A. ; Goncharov, Ivan M. ; Semenov, Oleg ; Remeeva, Alina ; Nazarenko, Vera V. ; Kuznetsova, Elizaveta ; Fomin, Vadim V. ; Konopleva, Maria N. ; Al Ebrahim, Rahaf ; Sluchanko, Nikolai N. ; Ryzhykau, Yury ; Semenov, Yury S. ; Kuklin, Alexander ; Manukhov, Ilya V. ; Gushchin, Ivan</creatorcontrib><description>ABSTRACT Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium‐chain C4–C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (β/α)8 TIM‐barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264–293, which form a β‐hairpin or a coil in Vibrio harveyi LuxA, form α‐helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.</description><identifier>ISSN: 0887-3585</identifier><identifier>ISSN: 1097-0134</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.26739</identifier><identifier>PMID: 39171358</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aldehydes ; Aldehydes - chemistry ; Aldehydes - metabolism ; Aliivibrio fischeri - enzymology ; Aliivibrio fischeri - genetics ; Amino Acid Sequence ; Bacteria ; bacterial luciferase ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Crystal structure ; Crystallography, X-Ray ; E coli ; Enhygromyxa ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genomic analysis ; Helices ; In vivo methods and tests ; Luciferases, Bacterial - chemistry ; Luciferases, Bacterial - genetics ; Luciferases, Bacterial - metabolism ; luminescence ; Models, Molecular ; Molecular structure ; Operon ; Operons ; Oxygenation ; Photorhabdus - enzymology ; Photorhabdus - genetics ; Photorhabdus - metabolism ; Phylogeny ; Protein folding ; Protein Multimerization ; Proteins ; small‐angle x‐ray scattering ; Speciation ; x‐ray crystallography</subject><ispartof>Proteins, structure, function, and bioinformatics, 2024-12, Vol.92 (12), p.1449-1458</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3</cites><orcidid>0000-0002-5348-6070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39171358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yudenko, Anna</creatorcontrib><creatorcontrib>Bazhenov, Sergey V.</creatorcontrib><creatorcontrib>Aleksenko, Vladimir A.</creatorcontrib><creatorcontrib>Goncharov, Ivan M.</creatorcontrib><creatorcontrib>Semenov, Oleg</creatorcontrib><creatorcontrib>Remeeva, Alina</creatorcontrib><creatorcontrib>Nazarenko, Vera V.</creatorcontrib><creatorcontrib>Kuznetsova, Elizaveta</creatorcontrib><creatorcontrib>Fomin, Vadim V.</creatorcontrib><creatorcontrib>Konopleva, Maria N.</creatorcontrib><creatorcontrib>Al Ebrahim, Rahaf</creatorcontrib><creatorcontrib>Sluchanko, Nikolai N.</creatorcontrib><creatorcontrib>Ryzhykau, Yury</creatorcontrib><creatorcontrib>Semenov, Yury S.</creatorcontrib><creatorcontrib>Kuklin, Alexander</creatorcontrib><creatorcontrib>Manukhov, Ilya V.</creatorcontrib><creatorcontrib>Gushchin, Ivan</creatorcontrib><title>luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>ABSTRACT Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium‐chain C4–C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (β/α)8 TIM‐barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264–293, which form a β‐hairpin or a coil in Vibrio harveyi LuxA, form α‐helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.</description><subject>Aldehydes</subject><subject>Aldehydes - chemistry</subject><subject>Aldehydes - metabolism</subject><subject>Aliivibrio fischeri - enzymology</subject><subject>Aliivibrio fischeri - genetics</subject><subject>Amino Acid Sequence</subject><subject>Bacteria</subject><subject>bacterial luciferase</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>E coli</subject><subject>Enhygromyxa</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genomic analysis</subject><subject>Helices</subject><subject>In vivo methods and tests</subject><subject>Luciferases, Bacterial - chemistry</subject><subject>Luciferases, Bacterial - genetics</subject><subject>Luciferases, Bacterial - metabolism</subject><subject>luminescence</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Operon</subject><subject>Operons</subject><subject>Oxygenation</subject><subject>Photorhabdus - enzymology</subject><subject>Photorhabdus - genetics</subject><subject>Photorhabdus - metabolism</subject><subject>Phylogeny</subject><subject>Protein folding</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>small‐angle x‐ray scattering</subject><subject>Speciation</subject><subject>x‐ray crystallography</subject><issn>0887-3585</issn><issn>1097-0134</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTix9ACl5E6HyTtPlzHGNTYTIRPZe0facdbTOTFbdvb3TTgwdPCcmPB56HkHMKQwrAblbOrodMSK4PSJ-CljFQnhySPiglY56qtEdOvF8CgNBcHJMe11TS8NEnD3W3GUW32GI0dbaJJu3b9jVcthsTeVNXrQlPhS3RRyaadm2xrmxr6ujONrasGnRVEc26olqgMx5PydHC1B7P9ueAvEwnz-O7eDa_vR-PZnHBEqHjNGeKF7LUqRSSJUonVCItKVCq05JxQASR55KXLAEqeV7moRBXKShUQuR8QK52uaH6e4d-nTWVL7CuTYu28xkHnQrFgNFAL__Qpe1cqBAUZSkIYEwEdb1ThbPeO1xkK1c1xm0zCtnXyNnXyNn3yAFf7CO7vMHyl_6sGgDdgY-qxu0_Udnj0_x5F_oJXIiEsA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Yudenko, Anna</creator><creator>Bazhenov, Sergey V.</creator><creator>Aleksenko, Vladimir A.</creator><creator>Goncharov, Ivan M.</creator><creator>Semenov, Oleg</creator><creator>Remeeva, Alina</creator><creator>Nazarenko, Vera V.</creator><creator>Kuznetsova, Elizaveta</creator><creator>Fomin, Vadim V.</creator><creator>Konopleva, Maria N.</creator><creator>Al Ebrahim, Rahaf</creator><creator>Sluchanko, Nikolai N.</creator><creator>Ryzhykau, Yury</creator><creator>Semenov, Yury S.</creator><creator>Kuklin, Alexander</creator><creator>Manukhov, Ilya V.</creator><creator>Gushchin, Ivan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5348-6070</orcidid></search><sort><creationdate>202412</creationdate><title>luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase</title><author>Yudenko, Anna ; Bazhenov, Sergey V. ; Aleksenko, Vladimir A. ; Goncharov, Ivan M. ; Semenov, Oleg ; Remeeva, Alina ; Nazarenko, Vera V. ; Kuznetsova, Elizaveta ; Fomin, Vadim V. ; Konopleva, Maria N. ; Al Ebrahim, Rahaf ; Sluchanko, Nikolai N. ; Ryzhykau, Yury ; Semenov, Yury S. ; Kuklin, Alexander ; Manukhov, Ilya V. ; Gushchin, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aldehydes</topic><topic>Aldehydes - chemistry</topic><topic>Aldehydes - metabolism</topic><topic>Aliivibrio fischeri - enzymology</topic><topic>Aliivibrio fischeri - genetics</topic><topic>Amino Acid Sequence</topic><topic>Bacteria</topic><topic>bacterial luciferase</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>E coli</topic><topic>Enhygromyxa</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genomic analysis</topic><topic>Helices</topic><topic>In vivo methods and tests</topic><topic>Luciferases, Bacterial - chemistry</topic><topic>Luciferases, Bacterial - genetics</topic><topic>Luciferases, Bacterial - metabolism</topic><topic>luminescence</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Operon</topic><topic>Operons</topic><topic>Oxygenation</topic><topic>Photorhabdus - enzymology</topic><topic>Photorhabdus - genetics</topic><topic>Photorhabdus - metabolism</topic><topic>Phylogeny</topic><topic>Protein folding</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>small‐angle x‐ray scattering</topic><topic>Speciation</topic><topic>x‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yudenko, Anna</creatorcontrib><creatorcontrib>Bazhenov, Sergey V.</creatorcontrib><creatorcontrib>Aleksenko, Vladimir A.</creatorcontrib><creatorcontrib>Goncharov, Ivan M.</creatorcontrib><creatorcontrib>Semenov, Oleg</creatorcontrib><creatorcontrib>Remeeva, Alina</creatorcontrib><creatorcontrib>Nazarenko, Vera V.</creatorcontrib><creatorcontrib>Kuznetsova, Elizaveta</creatorcontrib><creatorcontrib>Fomin, Vadim V.</creatorcontrib><creatorcontrib>Konopleva, Maria N.</creatorcontrib><creatorcontrib>Al Ebrahim, Rahaf</creatorcontrib><creatorcontrib>Sluchanko, Nikolai N.</creatorcontrib><creatorcontrib>Ryzhykau, Yury</creatorcontrib><creatorcontrib>Semenov, Yury S.</creatorcontrib><creatorcontrib>Kuklin, Alexander</creatorcontrib><creatorcontrib>Manukhov, Ilya V.</creatorcontrib><creatorcontrib>Gushchin, Ivan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yudenko, Anna</au><au>Bazhenov, Sergey V.</au><au>Aleksenko, Vladimir A.</au><au>Goncharov, Ivan M.</au><au>Semenov, Oleg</au><au>Remeeva, Alina</au><au>Nazarenko, Vera V.</au><au>Kuznetsova, Elizaveta</au><au>Fomin, Vadim V.</au><au>Konopleva, Maria N.</au><au>Al Ebrahim, Rahaf</au><au>Sluchanko, Nikolai N.</au><au>Ryzhykau, Yury</au><au>Semenov, Yury S.</au><au>Kuklin, Alexander</au><au>Manukhov, Ilya V.</au><au>Gushchin, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2024-12</date><risdate>2024</risdate><volume>92</volume><issue>12</issue><spage>1449</spage><epage>1458</epage><pages>1449-1458</pages><issn>0887-3585</issn><issn>1097-0134</issn><eissn>1097-0134</eissn><abstract>ABSTRACT Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium‐chain C4–C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (β/α)8 TIM‐barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264–293, which form a β‐hairpin or a coil in Vibrio harveyi LuxA, form α‐helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39171358</pmid><doi>10.1002/prot.26739</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5348-6070</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2024-12, Vol.92 (12), p.1449-1458
issn 0887-3585
1097-0134
1097-0134
language eng
recordid cdi_proquest_miscellaneous_3095682021
source Wiley-Blackwell Read & Publish Collection
subjects Aldehydes
Aldehydes - chemistry
Aldehydes - metabolism
Aliivibrio fischeri - enzymology
Aliivibrio fischeri - genetics
Amino Acid Sequence
Bacteria
bacterial luciferase
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Crystal structure
Crystallography, X-Ray
E coli
Enhygromyxa
Escherichia coli - genetics
Escherichia coli - metabolism
Genomic analysis
Helices
In vivo methods and tests
Luciferases, Bacterial - chemistry
Luciferases, Bacterial - genetics
Luciferases, Bacterial - metabolism
luminescence
Models, Molecular
Molecular structure
Operon
Operons
Oxygenation
Photorhabdus - enzymology
Photorhabdus - genetics
Photorhabdus - metabolism
Phylogeny
Protein folding
Protein Multimerization
Proteins
small‐angle x‐ray scattering
Speciation
x‐ray crystallography
title luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=luxA%20Gene%20From%20Enhygromyxa%20salina%20Encodes%20a%20Functional%20Homodimeric%20Luciferase&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Yudenko,%20Anna&rft.date=2024-12&rft.volume=92&rft.issue=12&rft.spage=1449&rft.epage=1458&rft.pages=1449-1458&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.26739&rft_dat=%3Cproquest_cross%3E3095682021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125060226&rft_id=info:pmid/39171358&rfr_iscdi=true