Loading…
luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase
ABSTRACT Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required...
Saved in:
Published in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2024-12, Vol.92 (12), p.1449-1458 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3 |
container_end_page | 1458 |
container_issue | 12 |
container_start_page | 1449 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 92 |
creator | Yudenko, Anna Bazhenov, Sergey V. Aleksenko, Vladimir A. Goncharov, Ivan M. Semenov, Oleg Remeeva, Alina Nazarenko, Vera V. Kuznetsova, Elizaveta Fomin, Vadim V. Konopleva, Maria N. Al Ebrahim, Rahaf Sluchanko, Nikolai N. Ryzhykau, Yury Semenov, Yury S. Kuklin, Alexander Manukhov, Ilya V. Gushchin, Ivan |
description | ABSTRACT
Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium‐chain C4–C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (β/α)8 TIM‐barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264–293, which form a β‐hairpin or a coil in Vibrio harveyi LuxA, form α‐helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene. |
doi_str_mv | 10.1002/prot.26739 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3095682021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095682021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9ACl5E6HyTtPlzHGNTYTIRPZe0facdbTOTFbdvb3TTgwdPCcmPB56HkHMKQwrAblbOrodMSK4PSJ-CljFQnhySPiglY56qtEdOvF8CgNBcHJMe11TS8NEnD3W3GUW32GI0dbaJJu3b9jVcthsTeVNXrQlPhS3RRyaadm2xrmxr6ujONrasGnRVEc26olqgMx5PydHC1B7P9ueAvEwnz-O7eDa_vR-PZnHBEqHjNGeKF7LUqRSSJUonVCItKVCq05JxQASR55KXLAEqeV7moRBXKShUQuR8QK52uaH6e4d-nTWVL7CuTYu28xkHnQrFgNFAL__Qpe1cqBAUZSkIYEwEdb1ThbPeO1xkK1c1xm0zCtnXyNnXyNn3yAFf7CO7vMHyl_6sGgDdgY-qxu0_Udnj0_x5F_oJXIiEsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125060226</pqid></control><display><type>article</type><title>luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yudenko, Anna ; Bazhenov, Sergey V. ; Aleksenko, Vladimir A. ; Goncharov, Ivan M. ; Semenov, Oleg ; Remeeva, Alina ; Nazarenko, Vera V. ; Kuznetsova, Elizaveta ; Fomin, Vadim V. ; Konopleva, Maria N. ; Al Ebrahim, Rahaf ; Sluchanko, Nikolai N. ; Ryzhykau, Yury ; Semenov, Yury S. ; Kuklin, Alexander ; Manukhov, Ilya V. ; Gushchin, Ivan</creator><creatorcontrib>Yudenko, Anna ; Bazhenov, Sergey V. ; Aleksenko, Vladimir A. ; Goncharov, Ivan M. ; Semenov, Oleg ; Remeeva, Alina ; Nazarenko, Vera V. ; Kuznetsova, Elizaveta ; Fomin, Vadim V. ; Konopleva, Maria N. ; Al Ebrahim, Rahaf ; Sluchanko, Nikolai N. ; Ryzhykau, Yury ; Semenov, Yury S. ; Kuklin, Alexander ; Manukhov, Ilya V. ; Gushchin, Ivan</creatorcontrib><description>ABSTRACT
Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium‐chain C4–C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (β/α)8 TIM‐barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264–293, which form a β‐hairpin or a coil in Vibrio harveyi LuxA, form α‐helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.</description><identifier>ISSN: 0887-3585</identifier><identifier>ISSN: 1097-0134</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.26739</identifier><identifier>PMID: 39171358</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aldehydes ; Aldehydes - chemistry ; Aldehydes - metabolism ; Aliivibrio fischeri - enzymology ; Aliivibrio fischeri - genetics ; Amino Acid Sequence ; Bacteria ; bacterial luciferase ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Crystal structure ; Crystallography, X-Ray ; E coli ; Enhygromyxa ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genomic analysis ; Helices ; In vivo methods and tests ; Luciferases, Bacterial - chemistry ; Luciferases, Bacterial - genetics ; Luciferases, Bacterial - metabolism ; luminescence ; Models, Molecular ; Molecular structure ; Operon ; Operons ; Oxygenation ; Photorhabdus - enzymology ; Photorhabdus - genetics ; Photorhabdus - metabolism ; Phylogeny ; Protein folding ; Protein Multimerization ; Proteins ; small‐angle x‐ray scattering ; Speciation ; x‐ray crystallography</subject><ispartof>Proteins, structure, function, and bioinformatics, 2024-12, Vol.92 (12), p.1449-1458</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3</cites><orcidid>0000-0002-5348-6070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39171358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yudenko, Anna</creatorcontrib><creatorcontrib>Bazhenov, Sergey V.</creatorcontrib><creatorcontrib>Aleksenko, Vladimir A.</creatorcontrib><creatorcontrib>Goncharov, Ivan M.</creatorcontrib><creatorcontrib>Semenov, Oleg</creatorcontrib><creatorcontrib>Remeeva, Alina</creatorcontrib><creatorcontrib>Nazarenko, Vera V.</creatorcontrib><creatorcontrib>Kuznetsova, Elizaveta</creatorcontrib><creatorcontrib>Fomin, Vadim V.</creatorcontrib><creatorcontrib>Konopleva, Maria N.</creatorcontrib><creatorcontrib>Al Ebrahim, Rahaf</creatorcontrib><creatorcontrib>Sluchanko, Nikolai N.</creatorcontrib><creatorcontrib>Ryzhykau, Yury</creatorcontrib><creatorcontrib>Semenov, Yury S.</creatorcontrib><creatorcontrib>Kuklin, Alexander</creatorcontrib><creatorcontrib>Manukhov, Ilya V.</creatorcontrib><creatorcontrib>Gushchin, Ivan</creatorcontrib><title>luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>ABSTRACT
Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium‐chain C4–C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (β/α)8 TIM‐barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264–293, which form a β‐hairpin or a coil in Vibrio harveyi LuxA, form α‐helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.</description><subject>Aldehydes</subject><subject>Aldehydes - chemistry</subject><subject>Aldehydes - metabolism</subject><subject>Aliivibrio fischeri - enzymology</subject><subject>Aliivibrio fischeri - genetics</subject><subject>Amino Acid Sequence</subject><subject>Bacteria</subject><subject>bacterial luciferase</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>E coli</subject><subject>Enhygromyxa</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genomic analysis</subject><subject>Helices</subject><subject>In vivo methods and tests</subject><subject>Luciferases, Bacterial - chemistry</subject><subject>Luciferases, Bacterial - genetics</subject><subject>Luciferases, Bacterial - metabolism</subject><subject>luminescence</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Operon</subject><subject>Operons</subject><subject>Oxygenation</subject><subject>Photorhabdus - enzymology</subject><subject>Photorhabdus - genetics</subject><subject>Photorhabdus - metabolism</subject><subject>Phylogeny</subject><subject>Protein folding</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>small‐angle x‐ray scattering</subject><subject>Speciation</subject><subject>x‐ray crystallography</subject><issn>0887-3585</issn><issn>1097-0134</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTix9ACl5E6HyTtPlzHGNTYTIRPZe0facdbTOTFbdvb3TTgwdPCcmPB56HkHMKQwrAblbOrodMSK4PSJ-CljFQnhySPiglY56qtEdOvF8CgNBcHJMe11TS8NEnD3W3GUW32GI0dbaJJu3b9jVcthsTeVNXrQlPhS3RRyaadm2xrmxr6ujONrasGnRVEc26olqgMx5PydHC1B7P9ueAvEwnz-O7eDa_vR-PZnHBEqHjNGeKF7LUqRSSJUonVCItKVCq05JxQASR55KXLAEqeV7moRBXKShUQuR8QK52uaH6e4d-nTWVL7CuTYu28xkHnQrFgNFAL__Qpe1cqBAUZSkIYEwEdb1ThbPeO1xkK1c1xm0zCtnXyNnXyNn3yAFf7CO7vMHyl_6sGgDdgY-qxu0_Udnj0_x5F_oJXIiEsA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Yudenko, Anna</creator><creator>Bazhenov, Sergey V.</creator><creator>Aleksenko, Vladimir A.</creator><creator>Goncharov, Ivan M.</creator><creator>Semenov, Oleg</creator><creator>Remeeva, Alina</creator><creator>Nazarenko, Vera V.</creator><creator>Kuznetsova, Elizaveta</creator><creator>Fomin, Vadim V.</creator><creator>Konopleva, Maria N.</creator><creator>Al Ebrahim, Rahaf</creator><creator>Sluchanko, Nikolai N.</creator><creator>Ryzhykau, Yury</creator><creator>Semenov, Yury S.</creator><creator>Kuklin, Alexander</creator><creator>Manukhov, Ilya V.</creator><creator>Gushchin, Ivan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5348-6070</orcidid></search><sort><creationdate>202412</creationdate><title>luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase</title><author>Yudenko, Anna ; Bazhenov, Sergey V. ; Aleksenko, Vladimir A. ; Goncharov, Ivan M. ; Semenov, Oleg ; Remeeva, Alina ; Nazarenko, Vera V. ; Kuznetsova, Elizaveta ; Fomin, Vadim V. ; Konopleva, Maria N. ; Al Ebrahim, Rahaf ; Sluchanko, Nikolai N. ; Ryzhykau, Yury ; Semenov, Yury S. ; Kuklin, Alexander ; Manukhov, Ilya V. ; Gushchin, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aldehydes</topic><topic>Aldehydes - chemistry</topic><topic>Aldehydes - metabolism</topic><topic>Aliivibrio fischeri - enzymology</topic><topic>Aliivibrio fischeri - genetics</topic><topic>Amino Acid Sequence</topic><topic>Bacteria</topic><topic>bacterial luciferase</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>E coli</topic><topic>Enhygromyxa</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genomic analysis</topic><topic>Helices</topic><topic>In vivo methods and tests</topic><topic>Luciferases, Bacterial - chemistry</topic><topic>Luciferases, Bacterial - genetics</topic><topic>Luciferases, Bacterial - metabolism</topic><topic>luminescence</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Operon</topic><topic>Operons</topic><topic>Oxygenation</topic><topic>Photorhabdus - enzymology</topic><topic>Photorhabdus - genetics</topic><topic>Photorhabdus - metabolism</topic><topic>Phylogeny</topic><topic>Protein folding</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>small‐angle x‐ray scattering</topic><topic>Speciation</topic><topic>x‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yudenko, Anna</creatorcontrib><creatorcontrib>Bazhenov, Sergey V.</creatorcontrib><creatorcontrib>Aleksenko, Vladimir A.</creatorcontrib><creatorcontrib>Goncharov, Ivan M.</creatorcontrib><creatorcontrib>Semenov, Oleg</creatorcontrib><creatorcontrib>Remeeva, Alina</creatorcontrib><creatorcontrib>Nazarenko, Vera V.</creatorcontrib><creatorcontrib>Kuznetsova, Elizaveta</creatorcontrib><creatorcontrib>Fomin, Vadim V.</creatorcontrib><creatorcontrib>Konopleva, Maria N.</creatorcontrib><creatorcontrib>Al Ebrahim, Rahaf</creatorcontrib><creatorcontrib>Sluchanko, Nikolai N.</creatorcontrib><creatorcontrib>Ryzhykau, Yury</creatorcontrib><creatorcontrib>Semenov, Yury S.</creatorcontrib><creatorcontrib>Kuklin, Alexander</creatorcontrib><creatorcontrib>Manukhov, Ilya V.</creatorcontrib><creatorcontrib>Gushchin, Ivan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yudenko, Anna</au><au>Bazhenov, Sergey V.</au><au>Aleksenko, Vladimir A.</au><au>Goncharov, Ivan M.</au><au>Semenov, Oleg</au><au>Remeeva, Alina</au><au>Nazarenko, Vera V.</au><au>Kuznetsova, Elizaveta</au><au>Fomin, Vadim V.</au><au>Konopleva, Maria N.</au><au>Al Ebrahim, Rahaf</au><au>Sluchanko, Nikolai N.</au><au>Ryzhykau, Yury</au><au>Semenov, Yury S.</au><au>Kuklin, Alexander</au><au>Manukhov, Ilya V.</au><au>Gushchin, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2024-12</date><risdate>2024</risdate><volume>92</volume><issue>12</issue><spage>1449</spage><epage>1458</epage><pages>1449-1458</pages><issn>0887-3585</issn><issn>1097-0134</issn><eissn>1097-0134</eissn><abstract>ABSTRACT
Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium‐chain C4–C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (β/α)8 TIM‐barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264–293, which form a β‐hairpin or a coil in Vibrio harveyi LuxA, form α‐helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>39171358</pmid><doi>10.1002/prot.26739</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5348-6070</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2024-12, Vol.92 (12), p.1449-1458 |
issn | 0887-3585 1097-0134 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_3095682021 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aldehydes Aldehydes - chemistry Aldehydes - metabolism Aliivibrio fischeri - enzymology Aliivibrio fischeri - genetics Amino Acid Sequence Bacteria bacterial luciferase Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Crystal structure Crystallography, X-Ray E coli Enhygromyxa Escherichia coli - genetics Escherichia coli - metabolism Genomic analysis Helices In vivo methods and tests Luciferases, Bacterial - chemistry Luciferases, Bacterial - genetics Luciferases, Bacterial - metabolism luminescence Models, Molecular Molecular structure Operon Operons Oxygenation Photorhabdus - enzymology Photorhabdus - genetics Photorhabdus - metabolism Phylogeny Protein folding Protein Multimerization Proteins small‐angle x‐ray scattering Speciation x‐ray crystallography |
title | luxA Gene From Enhygromyxa salina Encodes a Functional Homodimeric Luciferase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=luxA%20Gene%20From%20Enhygromyxa%20salina%20Encodes%20a%20Functional%20Homodimeric%20Luciferase&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Yudenko,%20Anna&rft.date=2024-12&rft.volume=92&rft.issue=12&rft.spage=1449&rft.epage=1458&rft.pages=1449-1458&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.26739&rft_dat=%3Cproquest_cross%3E3095682021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2469-5b283c7d957672489417e1d101195d230ee06bb73d240173bdb13438508e866b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125060226&rft_id=info:pmid/39171358&rfr_iscdi=true |