Loading…

Kinetic length and step permeability on the Si(1 1 1) (1 × 1) surface

Information on the kinetic regime of step motion and step permeability on the Si(1 1 1) (1 × 1) surface has been obtained from observations of island decay that were made with low energy electron microscopy. Island area during decay exhibits the expected power law dependence on time, with exponent,...

Full description

Saved in:
Bibliographic Details
Published in:Surface science 2007-10, Vol.601 (20), p.4669-4674
Main Authors: Man, K.L., Pang, A.B., Altman, M.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Information on the kinetic regime of step motion and step permeability on the Si(1 1 1) (1 × 1) surface has been obtained from observations of island decay that were made with low energy electron microscopy. Island area during decay exhibits the expected power law dependence on time, with exponent, α, that is a qualitative indicator of the kinetic regime. A new method is presented for determining the kinetic length quantitatively from measurements of the decay exponent in the symmetric island decay geometry on top of a larger concentric circular island. Using this approach, we determine the kinetic length on the Si(1 1 1) (1 × 1) surface at 1163 K to be d ∼ 75 a, where a is the lattice constant. It is shown that this result locates step motion firmly in the diffusion limited regime. Mass conservation of decaying island stacks is also observed at this temperature, which indicates that steps are effectively impermeable in the context of diffusion limited step kinetics.
ISSN:0039-6028
1879-2758
DOI:10.1016/j.susc.2007.05.039