Loading…
Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide
Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examin...
Saved in:
Published in: | Environmental science & technology 2024-09, Vol.58 (36), p.16066-16075 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3 |
container_end_page | 16075 |
container_issue | 36 |
container_start_page | 16066 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Zafiriou, Oliver C. Xie, Huixiang Kieber, David J. Wang, Wei Song, Guisheng Cohen, Natalie |
description | Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 μM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, K D, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater K Ds (66.7 ± 19.6 μM) overlap aqueous aliphatic but not aromatic aldehyde K Ds. Phenylacetaldehyde (PA) and other β,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN’s %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms. |
doi_str_mv | 10.1021/acs.est.4c04637 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096286268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106241363</sourcerecordid><originalsourceid>FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3</originalsourceid><addsrcrecordid>eNp10UtLxDAUBeAgio6PtTspuBGk403Spu1yGHyBr4WCu5KmN0ykTcakBeffm2FGF4KrQPjOSbiXkFMKUwqMXkkVphiGaaYgE7zYIROaM0jzMqe7ZAJAeVpx8X5ADkP4AADGodwnB7yiRZFlYkLsfCWtW6xab2xy_TmazjTeyOS-X3ZGyQGTJ2fTmXe9HIxKZl2LEWNIIn9ZuMGpBfYRdsmLd-2oBuNs4nTyrFDaGJhL38SbR2fdl2nxmOxp2QU82Z5H5O3m-nV-lz48397PZw-pZFk-pKVqSlpoLnRT8EzxnEoNiIXguhGC5o1mqtUtA5BMcsBcAZaasarK2oop5EfkYtO79O5zjBOqexMUdp206MZQc6gEKwUTZaTnf-iHG72Nv6s5BcEyygWP6mqjlHcheNT10pte-lVNoV6voo6rqNfp7Spi4mzbOzY9tr_-Z_YRXG7AOvn75n913wIJlVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106241363</pqid></control><display><type>article</type><title>Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zafiriou, Oliver C. ; Xie, Huixiang ; Kieber, David J. ; Wang, Wei ; Song, Guisheng ; Cohen, Natalie</creator><creatorcontrib>Zafiriou, Oliver C. ; Xie, Huixiang ; Kieber, David J. ; Wang, Wei ; Song, Guisheng ; Cohen, Natalie</creatorcontrib><description>Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 μM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, K D, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater K Ds (66.7 ± 19.6 μM) overlap aqueous aliphatic but not aromatic aldehyde K Ds. Phenylacetaldehyde (PA) and other β,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN’s %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c04637</identifier><identifier>PMID: 39177446</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aldehydes ; Aldehydes - chemistry ; Biogeochemical Cycling ; Borohydrides ; Carbon monoxide ; Carbon Monoxide - chemistry ; Carbonyl compounds ; Carbonyls ; Chemical equilibrium ; Dissolved organic matter ; Euphotic zone ; Hydrogen cyanide ; Hydrogen Cyanide - chemistry ; Ketones ; Nitriles - chemistry ; Phenylacetaldehyde ; Photochemicals ; Photochemistry ; Photolysis ; Photoproduction ; Precursors ; Seawater ; Seawater - chemistry ; Solvation</subject><ispartof>Environmental science & technology, 2024-09, Vol.58 (36), p.16066-16075</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 10, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3</cites><orcidid>0000-0001-6532-950X ; 0000-0001-8774-1108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39177446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zafiriou, Oliver C.</creatorcontrib><creatorcontrib>Xie, Huixiang</creatorcontrib><creatorcontrib>Kieber, David J.</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Song, Guisheng</creatorcontrib><creatorcontrib>Cohen, Natalie</creatorcontrib><title>Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 μM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, K D, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater K Ds (66.7 ± 19.6 μM) overlap aqueous aliphatic but not aromatic aldehyde K Ds. Phenylacetaldehyde (PA) and other β,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN’s %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.</description><subject>Aldehydes</subject><subject>Aldehydes - chemistry</subject><subject>Biogeochemical Cycling</subject><subject>Borohydrides</subject><subject>Carbon monoxide</subject><subject>Carbon Monoxide - chemistry</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Chemical equilibrium</subject><subject>Dissolved organic matter</subject><subject>Euphotic zone</subject><subject>Hydrogen cyanide</subject><subject>Hydrogen Cyanide - chemistry</subject><subject>Ketones</subject><subject>Nitriles - chemistry</subject><subject>Phenylacetaldehyde</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photolysis</subject><subject>Photoproduction</subject><subject>Precursors</subject><subject>Seawater</subject><subject>Seawater - chemistry</subject><subject>Solvation</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10UtLxDAUBeAgio6PtTspuBGk403Spu1yGHyBr4WCu5KmN0ykTcakBeffm2FGF4KrQPjOSbiXkFMKUwqMXkkVphiGaaYgE7zYIROaM0jzMqe7ZAJAeVpx8X5ADkP4AADGodwnB7yiRZFlYkLsfCWtW6xab2xy_TmazjTeyOS-X3ZGyQGTJ2fTmXe9HIxKZl2LEWNIIn9ZuMGpBfYRdsmLd-2oBuNs4nTyrFDaGJhL38SbR2fdl2nxmOxp2QU82Z5H5O3m-nV-lz48397PZw-pZFk-pKVqSlpoLnRT8EzxnEoNiIXguhGC5o1mqtUtA5BMcsBcAZaasarK2oop5EfkYtO79O5zjBOqexMUdp206MZQc6gEKwUTZaTnf-iHG72Nv6s5BcEyygWP6mqjlHcheNT10pte-lVNoV6voo6rqNfp7Spi4mzbOzY9tr_-Z_YRXG7AOvn75n913wIJlVM</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Zafiriou, Oliver C.</creator><creator>Xie, Huixiang</creator><creator>Kieber, David J.</creator><creator>Wang, Wei</creator><creator>Song, Guisheng</creator><creator>Cohen, Natalie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6532-950X</orcidid><orcidid>https://orcid.org/0000-0001-8774-1108</orcidid></search><sort><creationdate>20240910</creationdate><title>Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide</title><author>Zafiriou, Oliver C. ; Xie, Huixiang ; Kieber, David J. ; Wang, Wei ; Song, Guisheng ; Cohen, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aldehydes</topic><topic>Aldehydes - chemistry</topic><topic>Biogeochemical Cycling</topic><topic>Borohydrides</topic><topic>Carbon monoxide</topic><topic>Carbon Monoxide - chemistry</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Chemical equilibrium</topic><topic>Dissolved organic matter</topic><topic>Euphotic zone</topic><topic>Hydrogen cyanide</topic><topic>Hydrogen Cyanide - chemistry</topic><topic>Ketones</topic><topic>Nitriles - chemistry</topic><topic>Phenylacetaldehyde</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photolysis</topic><topic>Photoproduction</topic><topic>Precursors</topic><topic>Seawater</topic><topic>Seawater - chemistry</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafiriou, Oliver C.</creatorcontrib><creatorcontrib>Xie, Huixiang</creatorcontrib><creatorcontrib>Kieber, David J.</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Song, Guisheng</creatorcontrib><creatorcontrib>Cohen, Natalie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafiriou, Oliver C.</au><au>Xie, Huixiang</au><au>Kieber, David J.</au><au>Wang, Wei</au><au>Song, Guisheng</au><au>Cohen, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-09-10</date><risdate>2024</risdate><volume>58</volume><issue>36</issue><spage>16066</spage><epage>16075</epage><pages>16066-16075</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 μM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, K D, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater K Ds (66.7 ± 19.6 μM) overlap aqueous aliphatic but not aromatic aldehyde K Ds. Phenylacetaldehyde (PA) and other β,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN’s %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39177446</pmid><doi>10.1021/acs.est.4c04637</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6532-950X</orcidid><orcidid>https://orcid.org/0000-0001-8774-1108</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-09, Vol.58 (36), p.16066-16075 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3096286268 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Aldehydes Aldehydes - chemistry Biogeochemical Cycling Borohydrides Carbon monoxide Carbon Monoxide - chemistry Carbonyl compounds Carbonyls Chemical equilibrium Dissolved organic matter Euphotic zone Hydrogen cyanide Hydrogen Cyanide - chemistry Ketones Nitriles - chemistry Phenylacetaldehyde Photochemicals Photochemistry Photolysis Photoproduction Precursors Seawater Seawater - chemistry Solvation |
title | Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyanohydrin%20Equilibria%20Implicate%20Non-Aromatic%20Aldehydes%20in%20Photochemical%20Production%20of%20Oceanic%20Carbon%20Monoxide&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zafiriou,%20Oliver%20C.&rft.date=2024-09-10&rft.volume=58&rft.issue=36&rft.spage=16066&rft.epage=16075&rft.pages=16066-16075&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c04637&rft_dat=%3Cproquest_cross%3E3106241363%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106241363&rft_id=info:pmid/39177446&rfr_iscdi=true |