Loading…

Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide

Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examin...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2024-09, Vol.58 (36), p.16066-16075
Main Authors: Zafiriou, Oliver C., Xie, Huixiang, Kieber, David J., Wang, Wei, Song, Guisheng, Cohen, Natalie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3
container_end_page 16075
container_issue 36
container_start_page 16066
container_title Environmental science & technology
container_volume 58
creator Zafiriou, Oliver C.
Xie, Huixiang
Kieber, David J.
Wang, Wei
Song, Guisheng
Cohen, Natalie
description Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 μM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, K D, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater K Ds (66.7 ± 19.6 μM) overlap aqueous aliphatic but not aromatic aldehyde K Ds. Phenylacetaldehyde (PA) and other β,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN’s %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.
doi_str_mv 10.1021/acs.est.4c04637
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096286268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106241363</sourcerecordid><originalsourceid>FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3</originalsourceid><addsrcrecordid>eNp10UtLxDAUBeAgio6PtTspuBGk403Spu1yGHyBr4WCu5KmN0ykTcakBeffm2FGF4KrQPjOSbiXkFMKUwqMXkkVphiGaaYgE7zYIROaM0jzMqe7ZAJAeVpx8X5ADkP4AADGodwnB7yiRZFlYkLsfCWtW6xab2xy_TmazjTeyOS-X3ZGyQGTJ2fTmXe9HIxKZl2LEWNIIn9ZuMGpBfYRdsmLd-2oBuNs4nTyrFDaGJhL38SbR2fdl2nxmOxp2QU82Z5H5O3m-nV-lz48397PZw-pZFk-pKVqSlpoLnRT8EzxnEoNiIXguhGC5o1mqtUtA5BMcsBcAZaasarK2oop5EfkYtO79O5zjBOqexMUdp206MZQc6gEKwUTZaTnf-iHG72Nv6s5BcEyygWP6mqjlHcheNT10pte-lVNoV6voo6rqNfp7Spi4mzbOzY9tr_-Z_YRXG7AOvn75n913wIJlVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106241363</pqid></control><display><type>article</type><title>Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zafiriou, Oliver C. ; Xie, Huixiang ; Kieber, David J. ; Wang, Wei ; Song, Guisheng ; Cohen, Natalie</creator><creatorcontrib>Zafiriou, Oliver C. ; Xie, Huixiang ; Kieber, David J. ; Wang, Wei ; Song, Guisheng ; Cohen, Natalie</creatorcontrib><description>Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 μM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, K D, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater K Ds (66.7 ± 19.6 μM) overlap aqueous aliphatic but not aromatic aldehyde K Ds. Phenylacetaldehyde (PA) and other β,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN’s %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c04637</identifier><identifier>PMID: 39177446</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aldehydes ; Aldehydes - chemistry ; Biogeochemical Cycling ; Borohydrides ; Carbon monoxide ; Carbon Monoxide - chemistry ; Carbonyl compounds ; Carbonyls ; Chemical equilibrium ; Dissolved organic matter ; Euphotic zone ; Hydrogen cyanide ; Hydrogen Cyanide - chemistry ; Ketones ; Nitriles - chemistry ; Phenylacetaldehyde ; Photochemicals ; Photochemistry ; Photolysis ; Photoproduction ; Precursors ; Seawater ; Seawater - chemistry ; Solvation</subject><ispartof>Environmental science &amp; technology, 2024-09, Vol.58 (36), p.16066-16075</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 10, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3</cites><orcidid>0000-0001-6532-950X ; 0000-0001-8774-1108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39177446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zafiriou, Oliver C.</creatorcontrib><creatorcontrib>Xie, Huixiang</creatorcontrib><creatorcontrib>Kieber, David J.</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Song, Guisheng</creatorcontrib><creatorcontrib>Cohen, Natalie</creatorcontrib><title>Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 μM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, K D, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater K Ds (66.7 ± 19.6 μM) overlap aqueous aliphatic but not aromatic aldehyde K Ds. Phenylacetaldehyde (PA) and other β,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN’s %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.</description><subject>Aldehydes</subject><subject>Aldehydes - chemistry</subject><subject>Biogeochemical Cycling</subject><subject>Borohydrides</subject><subject>Carbon monoxide</subject><subject>Carbon Monoxide - chemistry</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Chemical equilibrium</subject><subject>Dissolved organic matter</subject><subject>Euphotic zone</subject><subject>Hydrogen cyanide</subject><subject>Hydrogen Cyanide - chemistry</subject><subject>Ketones</subject><subject>Nitriles - chemistry</subject><subject>Phenylacetaldehyde</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photolysis</subject><subject>Photoproduction</subject><subject>Precursors</subject><subject>Seawater</subject><subject>Seawater - chemistry</subject><subject>Solvation</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10UtLxDAUBeAgio6PtTspuBGk403Spu1yGHyBr4WCu5KmN0ykTcakBeffm2FGF4KrQPjOSbiXkFMKUwqMXkkVphiGaaYgE7zYIROaM0jzMqe7ZAJAeVpx8X5ADkP4AADGodwnB7yiRZFlYkLsfCWtW6xab2xy_TmazjTeyOS-X3ZGyQGTJ2fTmXe9HIxKZl2LEWNIIn9ZuMGpBfYRdsmLd-2oBuNs4nTyrFDaGJhL38SbR2fdl2nxmOxp2QU82Z5H5O3m-nV-lz48397PZw-pZFk-pKVqSlpoLnRT8EzxnEoNiIXguhGC5o1mqtUtA5BMcsBcAZaasarK2oop5EfkYtO79O5zjBOqexMUdp206MZQc6gEKwUTZaTnf-iHG72Nv6s5BcEyygWP6mqjlHcheNT10pte-lVNoV6voo6rqNfp7Spi4mzbOzY9tr_-Z_YRXG7AOvn75n913wIJlVM</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Zafiriou, Oliver C.</creator><creator>Xie, Huixiang</creator><creator>Kieber, David J.</creator><creator>Wang, Wei</creator><creator>Song, Guisheng</creator><creator>Cohen, Natalie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6532-950X</orcidid><orcidid>https://orcid.org/0000-0001-8774-1108</orcidid></search><sort><creationdate>20240910</creationdate><title>Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide</title><author>Zafiriou, Oliver C. ; Xie, Huixiang ; Kieber, David J. ; Wang, Wei ; Song, Guisheng ; Cohen, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aldehydes</topic><topic>Aldehydes - chemistry</topic><topic>Biogeochemical Cycling</topic><topic>Borohydrides</topic><topic>Carbon monoxide</topic><topic>Carbon Monoxide - chemistry</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Chemical equilibrium</topic><topic>Dissolved organic matter</topic><topic>Euphotic zone</topic><topic>Hydrogen cyanide</topic><topic>Hydrogen Cyanide - chemistry</topic><topic>Ketones</topic><topic>Nitriles - chemistry</topic><topic>Phenylacetaldehyde</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photolysis</topic><topic>Photoproduction</topic><topic>Precursors</topic><topic>Seawater</topic><topic>Seawater - chemistry</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafiriou, Oliver C.</creatorcontrib><creatorcontrib>Xie, Huixiang</creatorcontrib><creatorcontrib>Kieber, David J.</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Song, Guisheng</creatorcontrib><creatorcontrib>Cohen, Natalie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafiriou, Oliver C.</au><au>Xie, Huixiang</au><au>Kieber, David J.</au><au>Wang, Wei</au><au>Song, Guisheng</au><au>Cohen, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-09-10</date><risdate>2024</risdate><volume>58</volume><issue>36</issue><spage>16066</spage><epage>16075</epage><pages>16066-16075</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 μM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, K D, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater K Ds (66.7 ± 19.6 μM) overlap aqueous aliphatic but not aromatic aldehyde K Ds. Phenylacetaldehyde (PA) and other β,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN’s %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39177446</pmid><doi>10.1021/acs.est.4c04637</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6532-950X</orcidid><orcidid>https://orcid.org/0000-0001-8774-1108</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-09, Vol.58 (36), p.16066-16075
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3096286268
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Aldehydes
Aldehydes - chemistry
Biogeochemical Cycling
Borohydrides
Carbon monoxide
Carbon Monoxide - chemistry
Carbonyl compounds
Carbonyls
Chemical equilibrium
Dissolved organic matter
Euphotic zone
Hydrogen cyanide
Hydrogen Cyanide - chemistry
Ketones
Nitriles - chemistry
Phenylacetaldehyde
Photochemicals
Photochemistry
Photolysis
Photoproduction
Precursors
Seawater
Seawater - chemistry
Solvation
title Cyanohydrin Equilibria Implicate Non-Aromatic Aldehydes in Photochemical Production of Oceanic Carbon Monoxide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyanohydrin%20Equilibria%20Implicate%20Non-Aromatic%20Aldehydes%20in%20Photochemical%20Production%20of%20Oceanic%20Carbon%20Monoxide&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zafiriou,%20Oliver%20C.&rft.date=2024-09-10&rft.volume=58&rft.issue=36&rft.spage=16066&rft.epage=16075&rft.pages=16066-16075&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c04637&rft_dat=%3Cproquest_cross%3E3106241363%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a245t-8cb817f36fb734c351af0ee763fb6615bf2cdfd200a2a30e5c0e8f22994d92ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106241363&rft_id=info:pmid/39177446&rfr_iscdi=true