Loading…
LSVC: A Lifelong Learning Approach for Stream-View Clustering
Multiview clustering (MVC) can achieve more accurate results by utilizing complementary information from multiple perspectives, compared to traditional single-view methods. However, current multiview techniques require all views to be available upfront, making them inadequate for dealing with preval...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2024-08, Vol.PP, p.1-14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | PP |
creator | Li, Haoran Ren, Zhenwen Guo, Yulan You, Jiali You, Xiaojian |
description | Multiview clustering (MVC) can achieve more accurate results by utilizing complementary information from multiple perspectives, compared to traditional single-view methods. However, current multiview techniques require all views to be available upfront, making them inadequate for dealing with prevalent data sources that arrive as streams, such as stem cell analysis and multicamera surveillance. To address this problem, in this article, we propose a method called lifelong stream-view clustering (LSVC), which comprises an embedding anchor knowledge library and three key components, enabling the capability to perform asynchronous clustering on stream views. These three components are specifically: 1) the knowledge extraction module that extracts the abstract knowledge of the newcome view over time and updates the shared knowledge library; 2) the knowledge transfer module that aligns the newcome view with the historical knowledge library, enabling the transfer of structure information to the knowledge library; and 3) the knowledge rule module that constraints the knowledge library to enjoy a fair amount of anchors for each cluster, improving the discrimination of knowledge. The experimental results show that LSVC outperforms traditional single-view clustering (SVC) and MVC methods as it gradually improves with the accumulation of stream views and tends to be stable over time. |
doi_str_mv | 10.1109/TNNLS.2024.3439394 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3096559094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10645694</ieee_id><sourcerecordid>3096559094</sourcerecordid><originalsourceid>FETCH-LOGICAL-i162t-2784752a07d4020a942f1ada3dc1997d9a0ed26e9f0c92d309bab58c4f5a1d43</originalsourceid><addsrcrecordid>eNo9j81Lw0AQxRdRbKn9B0QkRy-p-5lkBA8l-AWhHlqKt7DNTnQlaepugvjfu9LaucyD93vDG0IuGZ0xRuF2tVgUyxmnXM6EFCBAnpAxZwmPuciy06NO30Zk6v0nDZNQlUg4JyMBLM1oxsfkvliu87toHhW2xqbbvkcFare1Qcx3O9fp6iOqOxcte4e6jdcWv6O8GXyPLjAX5KzWjcfpYU_I6vFhlT_HxevTSz4vYhtK9DFPM5kqrmlqJOVUg-Q100YLUzGA1ICmaHiCUNMKuBEUNnqjskrWSjMjxYTc7M-GQl8D-r5sra-wafQWu8GXIZAoBRT-0OsDOmxaNOXO2Va7n_L_4wBc7QGLiEeb0USqJOR_AZC1YLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096559094</pqid></control><display><type>article</type><title>LSVC: A Lifelong Learning Approach for Stream-View Clustering</title><source>IEEE Xplore (Online service)</source><creator>Li, Haoran ; Ren, Zhenwen ; Guo, Yulan ; You, Jiali ; You, Xiaojian</creator><creatorcontrib>Li, Haoran ; Ren, Zhenwen ; Guo, Yulan ; You, Jiali ; You, Xiaojian</creatorcontrib><description>Multiview clustering (MVC) can achieve more accurate results by utilizing complementary information from multiple perspectives, compared to traditional single-view methods. However, current multiview techniques require all views to be available upfront, making them inadequate for dealing with prevalent data sources that arrive as streams, such as stem cell analysis and multicamera surveillance. To address this problem, in this article, we propose a method called lifelong stream-view clustering (LSVC), which comprises an embedding anchor knowledge library and three key components, enabling the capability to perform asynchronous clustering on stream views. These three components are specifically: 1) the knowledge extraction module that extracts the abstract knowledge of the newcome view over time and updates the shared knowledge library; 2) the knowledge transfer module that aligns the newcome view with the historical knowledge library, enabling the transfer of structure information to the knowledge library; and 3) the knowledge rule module that constraints the knowledge library to enjoy a fair amount of anchors for each cluster, improving the discrimination of knowledge. The experimental results show that LSVC outperforms traditional single-view clustering (SVC) and MVC methods as it gradually improves with the accumulation of stream views and tends to be stable over time.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3439394</identifier><identifier>PMID: 39178082</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Clustering ; Data mining ; Feature extraction ; Learning systems ; Libraries ; lifelong and continual learning ; multiview learning ; Static VAr compensators ; stream-view clustering ; Streams ; Task analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-08, Vol.PP, p.1-14</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4621-3496 ; 0000-0003-3791-9750 ; 0000-0003-0952-476X ; 0000-0003-0474-3533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10645694$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39178082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Haoran</creatorcontrib><creatorcontrib>Ren, Zhenwen</creatorcontrib><creatorcontrib>Guo, Yulan</creatorcontrib><creatorcontrib>You, Jiali</creatorcontrib><creatorcontrib>You, Xiaojian</creatorcontrib><title>LSVC: A Lifelong Learning Approach for Stream-View Clustering</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Multiview clustering (MVC) can achieve more accurate results by utilizing complementary information from multiple perspectives, compared to traditional single-view methods. However, current multiview techniques require all views to be available upfront, making them inadequate for dealing with prevalent data sources that arrive as streams, such as stem cell analysis and multicamera surveillance. To address this problem, in this article, we propose a method called lifelong stream-view clustering (LSVC), which comprises an embedding anchor knowledge library and three key components, enabling the capability to perform asynchronous clustering on stream views. These three components are specifically: 1) the knowledge extraction module that extracts the abstract knowledge of the newcome view over time and updates the shared knowledge library; 2) the knowledge transfer module that aligns the newcome view with the historical knowledge library, enabling the transfer of structure information to the knowledge library; and 3) the knowledge rule module that constraints the knowledge library to enjoy a fair amount of anchors for each cluster, improving the discrimination of knowledge. The experimental results show that LSVC outperforms traditional single-view clustering (SVC) and MVC methods as it gradually improves with the accumulation of stream views and tends to be stable over time.</description><subject>Clustering</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Learning systems</subject><subject>Libraries</subject><subject>lifelong and continual learning</subject><subject>multiview learning</subject><subject>Static VAr compensators</subject><subject>stream-view clustering</subject><subject>Streams</subject><subject>Task analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j81Lw0AQxRdRbKn9B0QkRy-p-5lkBA8l-AWhHlqKt7DNTnQlaepugvjfu9LaucyD93vDG0IuGZ0xRuF2tVgUyxmnXM6EFCBAnpAxZwmPuciy06NO30Zk6v0nDZNQlUg4JyMBLM1oxsfkvliu87toHhW2xqbbvkcFare1Qcx3O9fp6iOqOxcte4e6jdcWv6O8GXyPLjAX5KzWjcfpYU_I6vFhlT_HxevTSz4vYhtK9DFPM5kqrmlqJOVUg-Q100YLUzGA1ICmaHiCUNMKuBEUNnqjskrWSjMjxYTc7M-GQl8D-r5sra-wafQWu8GXIZAoBRT-0OsDOmxaNOXO2Va7n_L_4wBc7QGLiEeb0USqJOR_AZC1YLE</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Li, Haoran</creator><creator>Ren, Zhenwen</creator><creator>Guo, Yulan</creator><creator>You, Jiali</creator><creator>You, Xiaojian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4621-3496</orcidid><orcidid>https://orcid.org/0000-0003-3791-9750</orcidid><orcidid>https://orcid.org/0000-0003-0952-476X</orcidid><orcidid>https://orcid.org/0000-0003-0474-3533</orcidid></search><sort><creationdate>20240823</creationdate><title>LSVC: A Lifelong Learning Approach for Stream-View Clustering</title><author>Li, Haoran ; Ren, Zhenwen ; Guo, Yulan ; You, Jiali ; You, Xiaojian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i162t-2784752a07d4020a942f1ada3dc1997d9a0ed26e9f0c92d309bab58c4f5a1d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clustering</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Learning systems</topic><topic>Libraries</topic><topic>lifelong and continual learning</topic><topic>multiview learning</topic><topic>Static VAr compensators</topic><topic>stream-view clustering</topic><topic>Streams</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Haoran</creatorcontrib><creatorcontrib>Ren, Zhenwen</creatorcontrib><creatorcontrib>Guo, Yulan</creatorcontrib><creatorcontrib>You, Jiali</creatorcontrib><creatorcontrib>You, Xiaojian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haoran</au><au>Ren, Zhenwen</au><au>Guo, Yulan</au><au>You, Jiali</au><au>You, Xiaojian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSVC: A Lifelong Learning Approach for Stream-View Clustering</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-08-23</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Multiview clustering (MVC) can achieve more accurate results by utilizing complementary information from multiple perspectives, compared to traditional single-view methods. However, current multiview techniques require all views to be available upfront, making them inadequate for dealing with prevalent data sources that arrive as streams, such as stem cell analysis and multicamera surveillance. To address this problem, in this article, we propose a method called lifelong stream-view clustering (LSVC), which comprises an embedding anchor knowledge library and three key components, enabling the capability to perform asynchronous clustering on stream views. These three components are specifically: 1) the knowledge extraction module that extracts the abstract knowledge of the newcome view over time and updates the shared knowledge library; 2) the knowledge transfer module that aligns the newcome view with the historical knowledge library, enabling the transfer of structure information to the knowledge library; and 3) the knowledge rule module that constraints the knowledge library to enjoy a fair amount of anchors for each cluster, improving the discrimination of knowledge. The experimental results show that LSVC outperforms traditional single-view clustering (SVC) and MVC methods as it gradually improves with the accumulation of stream views and tends to be stable over time.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39178082</pmid><doi>10.1109/TNNLS.2024.3439394</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4621-3496</orcidid><orcidid>https://orcid.org/0000-0003-3791-9750</orcidid><orcidid>https://orcid.org/0000-0003-0952-476X</orcidid><orcidid>https://orcid.org/0000-0003-0474-3533</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-08, Vol.PP, p.1-14 |
issn | 2162-237X 2162-2388 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_3096559094 |
source | IEEE Xplore (Online service) |
subjects | Clustering Data mining Feature extraction Learning systems Libraries lifelong and continual learning multiview learning Static VAr compensators stream-view clustering Streams Task analysis |
title | LSVC: A Lifelong Learning Approach for Stream-View Clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSVC:%20A%20Lifelong%20Learning%20Approach%20for%20Stream-View%20Clustering&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Li,%20Haoran&rft.date=2024-08-23&rft.volume=PP&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3439394&rft_dat=%3Cproquest_pubme%3E3096559094%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i162t-2784752a07d4020a942f1ada3dc1997d9a0ed26e9f0c92d309bab58c4f5a1d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3096559094&rft_id=info:pmid/39178082&rft_ieee_id=10645694&rfr_iscdi=true |