Loading…

Sulfur recombination: A direct approach

This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2024-08, Vol.161 (8)
Main Authors: Koots, R., Brown, G., Pérez-Ríos, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3
container_end_page
container_issue 8
container_start_page
container_title The Journal of chemical physics
container_volume 161
creator Koots, R.
Brown, G.
Pérez-Ríos, J.
description This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experimental measurement at T = 298 K of Fair and Thrush [Trans. Faraday Soc. 65, 1208 (1969)]. Similarly, we find that the production of S2 strongly depends on the SAr product, the other possible reaction channel. Finally, using the classical threshold law, we check sulfur recombination with another third body, M = H2S, and find no significant change in the rate.
doi_str_mv 10.1063/5.0222273
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_3097494778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097548178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgijOOLnwBKbjwAh1Pkubmbhi8wYALdR3SNMUOvYxJu_DtjdPRhQuzORC-_Cf8CJ1imGPg9IbNgcQj6B6aYpAqFVzBPpoCEJwqDnyCjkJYAwAWJDtEE6qwVJxlU3TxMtTl4BPvbNfkVWv6qmtvk0VSVPGqT8xm4ztj34_RQWnq4E52c4be7u9el4_p6vnhablYpZZQ2adYGOIyS7iRJeTALAGSO56xwhrsTAHMOVJQYyUQSgCXygqeCUFA5pYVjs7Q5Zgb134MLvS6qYJ1dW1a1w1BU1AiU_GFjPT8D113g2_j77aKZRJv1dWorO9C8K7UG181xn9qDPq7Pc30rr1oz3aJQ9644lf-1BXB9QiCrfptVf-kfQEcCnQx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097548178</pqid></control><display><type>article</type><title>Sulfur recombination: A direct approach</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Koots, R. ; Brown, G. ; Pérez-Ríos, J.</creator><creatorcontrib>Koots, R. ; Brown, G. ; Pérez-Ríos, J.</creatorcontrib><description>This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experimental measurement at T = 298 K of Fair and Thrush [Trans. Faraday Soc. 65, 1208 (1969)]. Similarly, we find that the production of S2 strongly depends on the SAr product, the other possible reaction channel. Finally, using the classical threshold law, we check sulfur recombination with another third body, M = H2S, and find no significant change in the rate.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0222273</identifier><identifier>PMID: 39189654</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Recombination reactions ; Sulfur ; Trajectory measurement</subject><ispartof>The Journal of chemical physics, 2024-08, Vol.161 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3</cites><orcidid>0000-0001-9491-9859 ; 0009-0007-4646-8337 ; 0000-0002-9020-532X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0222273$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39189654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koots, R.</creatorcontrib><creatorcontrib>Brown, G.</creatorcontrib><creatorcontrib>Pérez-Ríos, J.</creatorcontrib><title>Sulfur recombination: A direct approach</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experimental measurement at T = 298 K of Fair and Thrush [Trans. Faraday Soc. 65, 1208 (1969)]. Similarly, we find that the production of S2 strongly depends on the SAr product, the other possible reaction channel. Finally, using the classical threshold law, we check sulfur recombination with another third body, M = H2S, and find no significant change in the rate.</description><subject>Recombination reactions</subject><subject>Sulfur</subject><subject>Trajectory measurement</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgijOOLnwBKbjwAh1Pkubmbhi8wYALdR3SNMUOvYxJu_DtjdPRhQuzORC-_Cf8CJ1imGPg9IbNgcQj6B6aYpAqFVzBPpoCEJwqDnyCjkJYAwAWJDtEE6qwVJxlU3TxMtTl4BPvbNfkVWv6qmtvk0VSVPGqT8xm4ztj34_RQWnq4E52c4be7u9el4_p6vnhablYpZZQ2adYGOIyS7iRJeTALAGSO56xwhrsTAHMOVJQYyUQSgCXygqeCUFA5pYVjs7Q5Zgb134MLvS6qYJ1dW1a1w1BU1AiU_GFjPT8D113g2_j77aKZRJv1dWorO9C8K7UG181xn9qDPq7Pc30rr1oz3aJQ9644lf-1BXB9QiCrfptVf-kfQEcCnQx</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Koots, R.</creator><creator>Brown, G.</creator><creator>Pérez-Ríos, J.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9491-9859</orcidid><orcidid>https://orcid.org/0009-0007-4646-8337</orcidid><orcidid>https://orcid.org/0000-0002-9020-532X</orcidid></search><sort><creationdate>20240828</creationdate><title>Sulfur recombination: A direct approach</title><author>Koots, R. ; Brown, G. ; Pérez-Ríos, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Recombination reactions</topic><topic>Sulfur</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koots, R.</creatorcontrib><creatorcontrib>Brown, G.</creatorcontrib><creatorcontrib>Pérez-Ríos, J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koots, R.</au><au>Brown, G.</au><au>Pérez-Ríos, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur recombination: A direct approach</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-08-28</date><risdate>2024</risdate><volume>161</volume><issue>8</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experimental measurement at T = 298 K of Fair and Thrush [Trans. Faraday Soc. 65, 1208 (1969)]. Similarly, we find that the production of S2 strongly depends on the SAr product, the other possible reaction channel. Finally, using the classical threshold law, we check sulfur recombination with another third body, M = H2S, and find no significant change in the rate.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39189654</pmid><doi>10.1063/5.0222273</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9491-9859</orcidid><orcidid>https://orcid.org/0009-0007-4646-8337</orcidid><orcidid>https://orcid.org/0000-0002-9020-532X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-08, Vol.161 (8)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_proquest_miscellaneous_3097494778
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Recombination reactions
Sulfur
Trajectory measurement
title Sulfur recombination: A direct approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur%20recombination:%20A%20direct%20approach&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Koots,%20R.&rft.date=2024-08-28&rft.volume=161&rft.issue=8&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0222273&rft_dat=%3Cproquest_scita%3E3097548178%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097548178&rft_id=info:pmid/39189654&rfr_iscdi=true