Loading…
Sulfur recombination: A direct approach
This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experi...
Saved in:
Published in: | The Journal of chemical physics 2024-08, Vol.161 (8) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3 |
container_end_page | |
container_issue | 8 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 161 |
creator | Koots, R. Brown, G. Pérez-Ríos, J. |
description | This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experimental measurement at T = 298 K of Fair and Thrush [Trans. Faraday Soc. 65, 1208 (1969)]. Similarly, we find that the production of S2 strongly depends on the SAr product, the other possible reaction channel. Finally, using the classical threshold law, we check sulfur recombination with another third body, M = H2S, and find no significant change in the rate. |
doi_str_mv | 10.1063/5.0222273 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_3097494778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097548178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgijOOLnwBKbjwAh1Pkubmbhi8wYALdR3SNMUOvYxJu_DtjdPRhQuzORC-_Cf8CJ1imGPg9IbNgcQj6B6aYpAqFVzBPpoCEJwqDnyCjkJYAwAWJDtEE6qwVJxlU3TxMtTl4BPvbNfkVWv6qmtvk0VSVPGqT8xm4ztj34_RQWnq4E52c4be7u9el4_p6vnhablYpZZQ2adYGOIyS7iRJeTALAGSO56xwhrsTAHMOVJQYyUQSgCXygqeCUFA5pYVjs7Q5Zgb134MLvS6qYJ1dW1a1w1BU1AiU_GFjPT8D113g2_j77aKZRJv1dWorO9C8K7UG181xn9qDPq7Pc30rr1oz3aJQ9644lf-1BXB9QiCrfptVf-kfQEcCnQx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097548178</pqid></control><display><type>article</type><title>Sulfur recombination: A direct approach</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Koots, R. ; Brown, G. ; Pérez-Ríos, J.</creator><creatorcontrib>Koots, R. ; Brown, G. ; Pérez-Ríos, J.</creatorcontrib><description>This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experimental measurement at T = 298 K of Fair and Thrush [Trans. Faraday Soc. 65, 1208 (1969)]. Similarly, we find that the production of S2 strongly depends on the SAr product, the other possible reaction channel. Finally, using the classical threshold law, we check sulfur recombination with another third body, M = H2S, and find no significant change in the rate.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0222273</identifier><identifier>PMID: 39189654</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Recombination reactions ; Sulfur ; Trajectory measurement</subject><ispartof>The Journal of chemical physics, 2024-08, Vol.161 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3</cites><orcidid>0000-0001-9491-9859 ; 0009-0007-4646-8337 ; 0000-0002-9020-532X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0222273$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39189654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koots, R.</creatorcontrib><creatorcontrib>Brown, G.</creatorcontrib><creatorcontrib>Pérez-Ríos, J.</creatorcontrib><title>Sulfur recombination: A direct approach</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experimental measurement at T = 298 K of Fair and Thrush [Trans. Faraday Soc. 65, 1208 (1969)]. Similarly, we find that the production of S2 strongly depends on the SAr product, the other possible reaction channel. Finally, using the classical threshold law, we check sulfur recombination with another third body, M = H2S, and find no significant change in the rate.</description><subject>Recombination reactions</subject><subject>Sulfur</subject><subject>Trajectory measurement</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgijOOLnwBKbjwAh1Pkubmbhi8wYALdR3SNMUOvYxJu_DtjdPRhQuzORC-_Cf8CJ1imGPg9IbNgcQj6B6aYpAqFVzBPpoCEJwqDnyCjkJYAwAWJDtEE6qwVJxlU3TxMtTl4BPvbNfkVWv6qmtvk0VSVPGqT8xm4ztj34_RQWnq4E52c4be7u9el4_p6vnhablYpZZQ2adYGOIyS7iRJeTALAGSO56xwhrsTAHMOVJQYyUQSgCXygqeCUFA5pYVjs7Q5Zgb134MLvS6qYJ1dW1a1w1BU1AiU_GFjPT8D113g2_j77aKZRJv1dWorO9C8K7UG181xn9qDPq7Pc30rr1oz3aJQ9644lf-1BXB9QiCrfptVf-kfQEcCnQx</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Koots, R.</creator><creator>Brown, G.</creator><creator>Pérez-Ríos, J.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9491-9859</orcidid><orcidid>https://orcid.org/0009-0007-4646-8337</orcidid><orcidid>https://orcid.org/0000-0002-9020-532X</orcidid></search><sort><creationdate>20240828</creationdate><title>Sulfur recombination: A direct approach</title><author>Koots, R. ; Brown, G. ; Pérez-Ríos, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Recombination reactions</topic><topic>Sulfur</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koots, R.</creatorcontrib><creatorcontrib>Brown, G.</creatorcontrib><creatorcontrib>Pérez-Ríos, J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koots, R.</au><au>Brown, G.</au><au>Pérez-Ríos, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur recombination: A direct approach</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-08-28</date><risdate>2024</risdate><volume>161</volume><issue>8</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>This work presents a direct three-body recombination approach of the sulfur recombination reaction, S + S + M → S2 + M, at temperatures between 100 and 500 K. Our calculations for M = Ar, based on a classical trajectory approach in hyperspherical coordinates, show excellent agreement with the experimental measurement at T = 298 K of Fair and Thrush [Trans. Faraday Soc. 65, 1208 (1969)]. Similarly, we find that the production of S2 strongly depends on the SAr product, the other possible reaction channel. Finally, using the classical threshold law, we check sulfur recombination with another third body, M = H2S, and find no significant change in the rate.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39189654</pmid><doi>10.1063/5.0222273</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9491-9859</orcidid><orcidid>https://orcid.org/0009-0007-4646-8337</orcidid><orcidid>https://orcid.org/0000-0002-9020-532X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-08, Vol.161 (8) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_3097494778 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Recombination reactions Sulfur Trajectory measurement |
title | Sulfur recombination: A direct approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur%20recombination:%20A%20direct%20approach&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Koots,%20R.&rft.date=2024-08-28&rft.volume=161&rft.issue=8&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0222273&rft_dat=%3Cproquest_scita%3E3097548178%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-17a2e4c26a8f0b05c202be645dca1ead05ee2d3ac8023201f9c76477208bc5de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3097548178&rft_id=info:pmid/39189654&rfr_iscdi=true |