Loading…
Analysis of structural defects and their influence on red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy
The present paper reported on the analysis of structural defects and their influence on the red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy (PAS). The nanowires were synthesized by hydrothermal method and low‐temperature post‐treatment using glucose as a reducing ag...
Saved in:
Published in: | Luminescence (Chichester, England) England), 2024-09, Vol.39 (9), p.e4881-n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 9 |
container_start_page | e4881 |
container_title | Luminescence (Chichester, England) |
container_volume | 39 |
creator | Hue, Pham Thi Hue, Nguyen Thi Ngoc Van Tiep, Nguyen Trung, Nguyen Vu Minh Phuc, Phan Trong Nguyen, La Ly Son, Lo Thai Trang, Le Thi Quynh Trung, Ngo Dang Hung, Nguyen Quang Tuyen, Luu Anh Duy, Nguyen Hoang |
description | The present paper reported on the analysis of structural defects and their influence on the red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy (PAS). The nanowires were synthesized by hydrothermal method and low‐temperature post‐treatment using glucose as a reducing agent. X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and photoluminescence excitation (PLE) were utilized, respectively, for determining the structural phase, morphology and red‐emitting intensity in studied samples. Three PAS experiments, namely, positron annihilation lifetime (PAL), Doppler broadening (DB), and electron momentum distribution (EMD), were simultaneously performed to investigate the formations of structural defects in synthesized materials. Obtained results indicated that the doping concentration of 0.06% was optimal for the substitution of Mn4+ and Mg2+ to two Al3+ sites and the formation of oxygen vacancy (VO)‐rich vacancy clusters (2VAl + 3VO) and large voids (~0.7 nm) with less Al atoms. Those characteristics reduced the energy transfer between Mn4+ ions, thus consequently enhanced the PL and PLE intensities. Moreover, this optimal doping concentration also effectively controlled the size of nanopores (~2.18 nm); hence, it is expected to maintain the high thermal conductivity of γ‐Al2O3 nanowire‐phosphor. The present study, therefore, demonstrated a potential application of γ‐Al2O3 nanowire‐phosphor in fabricating the high‐performance optoelectronic devices.
PAS analyses for γ‐Al2O3:Mn4+,Mg2+ nanowires reveal the optimal doping concentration (0.06%) for the substitution of Mn4+ and Mg2+ to two Al3+ sites, the formation of oxygen vacancy (VO)‐rich vacancy clusters, and large voids (~0.7 nm) with less Al atoms and nanopores (~2.18 nm). Those characteristics consequently enhanced the photoluminescence and photoluminescence excitation intensities and maintain the high thermal conductivity of γ‐Al2O3 nanowire‐phosphor. |
doi_str_mv | 10.1002/bio.4881 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3097852124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097852124</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1841-a245bd46a411a3cb587351c50cc2ec8531710c50527f14dbf283a9d802af3ee63</originalsourceid><addsrcrecordid>eNpdkc1KAzEUhYMoWKvgIwTcCHU0P5OZ1F0VfwpKN7oe0kymTUmTMclQZucDuPBdfA8fwicxRXHh6twD370XzgHgGKNzjBC5mGt3nnOOd8AAM0KykuR092-mbB8chLBCCBVFMR6At4kVpg86QNfAEH0nY-eFgbVqlIwBClvDuFTaQ20b0ykrFXQWelV_vb6rtY5R2wX8_EhuYsiMXj7afHT2uCAjaIV1G-1VgF3YQq0LOvq0LKzVS21E1MmENv3xLkjX9odgrxEmqKNfHYLn25un6_vsYXY3vZ48ZC3mOc4Eydm8zguRYyyonDNeUoYlQ1ISJTmjuMQoWUbKBuf1vCGcinHNERENVaqgQ3D6c7f17qVTIVZrHaQyRljlulBRNC45IzhFNwQn_9CV63zKLFEYjVmBOCkTlf1QG21UX7Ver4XvK4yqbSdV6qTadlJdTWdbpd8Q7oRJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109560827</pqid></control><display><type>article</type><title>Analysis of structural defects and their influence on red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hue, Pham Thi ; Hue, Nguyen Thi Ngoc ; Van Tiep, Nguyen ; Trung, Nguyen Vu Minh ; Phuc, Phan Trong ; Nguyen, La Ly ; Son, Lo Thai ; Trang, Le Thi Quynh ; Trung, Ngo Dang ; Hung, Nguyen Quang ; Tuyen, Luu Anh ; Duy, Nguyen Hoang</creator><creatorcontrib>Hue, Pham Thi ; Hue, Nguyen Thi Ngoc ; Van Tiep, Nguyen ; Trung, Nguyen Vu Minh ; Phuc, Phan Trong ; Nguyen, La Ly ; Son, Lo Thai ; Trang, Le Thi Quynh ; Trung, Ngo Dang ; Hung, Nguyen Quang ; Tuyen, Luu Anh ; Duy, Nguyen Hoang</creatorcontrib><description>The present paper reported on the analysis of structural defects and their influence on the red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy (PAS). The nanowires were synthesized by hydrothermal method and low‐temperature post‐treatment using glucose as a reducing agent. X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and photoluminescence excitation (PLE) were utilized, respectively, for determining the structural phase, morphology and red‐emitting intensity in studied samples. Three PAS experiments, namely, positron annihilation lifetime (PAL), Doppler broadening (DB), and electron momentum distribution (EMD), were simultaneously performed to investigate the formations of structural defects in synthesized materials. Obtained results indicated that the doping concentration of 0.06% was optimal for the substitution of Mn4+ and Mg2+ to two Al3+ sites and the formation of oxygen vacancy (VO)‐rich vacancy clusters (2VAl + 3VO) and large voids (~0.7 nm) with less Al atoms. Those characteristics reduced the energy transfer between Mn4+ ions, thus consequently enhanced the PL and PLE intensities. Moreover, this optimal doping concentration also effectively controlled the size of nanopores (~2.18 nm); hence, it is expected to maintain the high thermal conductivity of γ‐Al2O3 nanowire‐phosphor. The present study, therefore, demonstrated a potential application of γ‐Al2O3 nanowire‐phosphor in fabricating the high‐performance optoelectronic devices.
PAS analyses for γ‐Al2O3:Mn4+,Mg2+ nanowires reveal the optimal doping concentration (0.06%) for the substitution of Mn4+ and Mg2+ to two Al3+ sites, the formation of oxygen vacancy (VO)‐rich vacancy clusters, and large voids (~0.7 nm) with less Al atoms and nanopores (~2.18 nm). Those characteristics consequently enhanced the photoluminescence and photoluminescence excitation intensities and maintain the high thermal conductivity of γ‐Al2O3 nanowire‐phosphor.</description><identifier>ISSN: 1522-7235</identifier><identifier>ISSN: 1522-7243</identifier><identifier>EISSN: 1522-7243</identifier><identifier>DOI: 10.1002/bio.4881</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Defects ; Doping ; Doppler sonar ; Electron microscopy ; Energy transfer ; Luminescence ; Magnesium ; Manganese ions ; Momentum ; nanopores ; Nanotechnology ; Nanowires ; Optoelectronic devices ; Phosphors ; Photoluminescence ; Photons ; Positron annihilation ; positron annihilation spectroscopy ; Reducing agents ; Scanning electron microscopy ; Spectroscopy ; Spectrum analysis ; Synthesis ; Thermal conductivity ; Voids ; X-ray diffraction ; γ‐Al2O3 nanophosphor</subject><ispartof>Luminescence (Chichester, England), 2024-09, Vol.39 (9), p.e4881-n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0598-5932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hue, Pham Thi</creatorcontrib><creatorcontrib>Hue, Nguyen Thi Ngoc</creatorcontrib><creatorcontrib>Van Tiep, Nguyen</creatorcontrib><creatorcontrib>Trung, Nguyen Vu Minh</creatorcontrib><creatorcontrib>Phuc, Phan Trong</creatorcontrib><creatorcontrib>Nguyen, La Ly</creatorcontrib><creatorcontrib>Son, Lo Thai</creatorcontrib><creatorcontrib>Trang, Le Thi Quynh</creatorcontrib><creatorcontrib>Trung, Ngo Dang</creatorcontrib><creatorcontrib>Hung, Nguyen Quang</creatorcontrib><creatorcontrib>Tuyen, Luu Anh</creatorcontrib><creatorcontrib>Duy, Nguyen Hoang</creatorcontrib><title>Analysis of structural defects and their influence on red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy</title><title>Luminescence (Chichester, England)</title><description>The present paper reported on the analysis of structural defects and their influence on the red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy (PAS). The nanowires were synthesized by hydrothermal method and low‐temperature post‐treatment using glucose as a reducing agent. X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and photoluminescence excitation (PLE) were utilized, respectively, for determining the structural phase, morphology and red‐emitting intensity in studied samples. Three PAS experiments, namely, positron annihilation lifetime (PAL), Doppler broadening (DB), and electron momentum distribution (EMD), were simultaneously performed to investigate the formations of structural defects in synthesized materials. Obtained results indicated that the doping concentration of 0.06% was optimal for the substitution of Mn4+ and Mg2+ to two Al3+ sites and the formation of oxygen vacancy (VO)‐rich vacancy clusters (2VAl + 3VO) and large voids (~0.7 nm) with less Al atoms. Those characteristics reduced the energy transfer between Mn4+ ions, thus consequently enhanced the PL and PLE intensities. Moreover, this optimal doping concentration also effectively controlled the size of nanopores (~2.18 nm); hence, it is expected to maintain the high thermal conductivity of γ‐Al2O3 nanowire‐phosphor. The present study, therefore, demonstrated a potential application of γ‐Al2O3 nanowire‐phosphor in fabricating the high‐performance optoelectronic devices.
PAS analyses for γ‐Al2O3:Mn4+,Mg2+ nanowires reveal the optimal doping concentration (0.06%) for the substitution of Mn4+ and Mg2+ to two Al3+ sites, the formation of oxygen vacancy (VO)‐rich vacancy clusters, and large voids (~0.7 nm) with less Al atoms and nanopores (~2.18 nm). Those characteristics consequently enhanced the photoluminescence and photoluminescence excitation intensities and maintain the high thermal conductivity of γ‐Al2O3 nanowire‐phosphor.</description><subject>Aluminum oxide</subject><subject>Defects</subject><subject>Doping</subject><subject>Doppler sonar</subject><subject>Electron microscopy</subject><subject>Energy transfer</subject><subject>Luminescence</subject><subject>Magnesium</subject><subject>Manganese ions</subject><subject>Momentum</subject><subject>nanopores</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optoelectronic devices</subject><subject>Phosphors</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Positron annihilation</subject><subject>positron annihilation spectroscopy</subject><subject>Reducing agents</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Thermal conductivity</subject><subject>Voids</subject><subject>X-ray diffraction</subject><subject>γ‐Al2O3 nanophosphor</subject><issn>1522-7235</issn><issn>1522-7243</issn><issn>1522-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1KAzEUhYMoWKvgIwTcCHU0P5OZ1F0VfwpKN7oe0kymTUmTMclQZucDuPBdfA8fwicxRXHh6twD370XzgHgGKNzjBC5mGt3nnOOd8AAM0KykuR092-mbB8chLBCCBVFMR6At4kVpg86QNfAEH0nY-eFgbVqlIwBClvDuFTaQ20b0ykrFXQWelV_vb6rtY5R2wX8_EhuYsiMXj7afHT2uCAjaIV1G-1VgF3YQq0LOvq0LKzVS21E1MmENv3xLkjX9odgrxEmqKNfHYLn25un6_vsYXY3vZ48ZC3mOc4Eydm8zguRYyyonDNeUoYlQ1ISJTmjuMQoWUbKBuf1vCGcinHNERENVaqgQ3D6c7f17qVTIVZrHaQyRljlulBRNC45IzhFNwQn_9CV63zKLFEYjVmBOCkTlf1QG21UX7Ver4XvK4yqbSdV6qTadlJdTWdbpd8Q7oRJ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Hue, Pham Thi</creator><creator>Hue, Nguyen Thi Ngoc</creator><creator>Van Tiep, Nguyen</creator><creator>Trung, Nguyen Vu Minh</creator><creator>Phuc, Phan Trong</creator><creator>Nguyen, La Ly</creator><creator>Son, Lo Thai</creator><creator>Trang, Le Thi Quynh</creator><creator>Trung, Ngo Dang</creator><creator>Hung, Nguyen Quang</creator><creator>Tuyen, Luu Anh</creator><creator>Duy, Nguyen Hoang</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H95</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0598-5932</orcidid></search><sort><creationdate>202409</creationdate><title>Analysis of structural defects and their influence on red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy</title><author>Hue, Pham Thi ; Hue, Nguyen Thi Ngoc ; Van Tiep, Nguyen ; Trung, Nguyen Vu Minh ; Phuc, Phan Trong ; Nguyen, La Ly ; Son, Lo Thai ; Trang, Le Thi Quynh ; Trung, Ngo Dang ; Hung, Nguyen Quang ; Tuyen, Luu Anh ; Duy, Nguyen Hoang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1841-a245bd46a411a3cb587351c50cc2ec8531710c50527f14dbf283a9d802af3ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum oxide</topic><topic>Defects</topic><topic>Doping</topic><topic>Doppler sonar</topic><topic>Electron microscopy</topic><topic>Energy transfer</topic><topic>Luminescence</topic><topic>Magnesium</topic><topic>Manganese ions</topic><topic>Momentum</topic><topic>nanopores</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optoelectronic devices</topic><topic>Phosphors</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Positron annihilation</topic><topic>positron annihilation spectroscopy</topic><topic>Reducing agents</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Thermal conductivity</topic><topic>Voids</topic><topic>X-ray diffraction</topic><topic>γ‐Al2O3 nanophosphor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hue, Pham Thi</creatorcontrib><creatorcontrib>Hue, Nguyen Thi Ngoc</creatorcontrib><creatorcontrib>Van Tiep, Nguyen</creatorcontrib><creatorcontrib>Trung, Nguyen Vu Minh</creatorcontrib><creatorcontrib>Phuc, Phan Trong</creatorcontrib><creatorcontrib>Nguyen, La Ly</creatorcontrib><creatorcontrib>Son, Lo Thai</creatorcontrib><creatorcontrib>Trang, Le Thi Quynh</creatorcontrib><creatorcontrib>Trung, Ngo Dang</creatorcontrib><creatorcontrib>Hung, Nguyen Quang</creatorcontrib><creatorcontrib>Tuyen, Luu Anh</creatorcontrib><creatorcontrib>Duy, Nguyen Hoang</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Luminescence (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hue, Pham Thi</au><au>Hue, Nguyen Thi Ngoc</au><au>Van Tiep, Nguyen</au><au>Trung, Nguyen Vu Minh</au><au>Phuc, Phan Trong</au><au>Nguyen, La Ly</au><au>Son, Lo Thai</au><au>Trang, Le Thi Quynh</au><au>Trung, Ngo Dang</au><au>Hung, Nguyen Quang</au><au>Tuyen, Luu Anh</au><au>Duy, Nguyen Hoang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of structural defects and their influence on red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy</atitle><jtitle>Luminescence (Chichester, England)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>39</volume><issue>9</issue><spage>e4881</spage><epage>n/a</epage><pages>e4881-n/a</pages><issn>1522-7235</issn><issn>1522-7243</issn><eissn>1522-7243</eissn><abstract>The present paper reported on the analysis of structural defects and their influence on the red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy (PAS). The nanowires were synthesized by hydrothermal method and low‐temperature post‐treatment using glucose as a reducing agent. X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and photoluminescence excitation (PLE) were utilized, respectively, for determining the structural phase, morphology and red‐emitting intensity in studied samples. Three PAS experiments, namely, positron annihilation lifetime (PAL), Doppler broadening (DB), and electron momentum distribution (EMD), were simultaneously performed to investigate the formations of structural defects in synthesized materials. Obtained results indicated that the doping concentration of 0.06% was optimal for the substitution of Mn4+ and Mg2+ to two Al3+ sites and the formation of oxygen vacancy (VO)‐rich vacancy clusters (2VAl + 3VO) and large voids (~0.7 nm) with less Al atoms. Those characteristics reduced the energy transfer between Mn4+ ions, thus consequently enhanced the PL and PLE intensities. Moreover, this optimal doping concentration also effectively controlled the size of nanopores (~2.18 nm); hence, it is expected to maintain the high thermal conductivity of γ‐Al2O3 nanowire‐phosphor. The present study, therefore, demonstrated a potential application of γ‐Al2O3 nanowire‐phosphor in fabricating the high‐performance optoelectronic devices.
PAS analyses for γ‐Al2O3:Mn4+,Mg2+ nanowires reveal the optimal doping concentration (0.06%) for the substitution of Mn4+ and Mg2+ to two Al3+ sites, the formation of oxygen vacancy (VO)‐rich vacancy clusters, and large voids (~0.7 nm) with less Al atoms and nanopores (~2.18 nm). Those characteristics consequently enhanced the photoluminescence and photoluminescence excitation intensities and maintain the high thermal conductivity of γ‐Al2O3 nanowire‐phosphor.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/bio.4881</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0598-5932</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1522-7235 |
ispartof | Luminescence (Chichester, England), 2024-09, Vol.39 (9), p.e4881-n/a |
issn | 1522-7235 1522-7243 1522-7243 |
language | eng |
recordid | cdi_proquest_miscellaneous_3097852124 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aluminum oxide Defects Doping Doppler sonar Electron microscopy Energy transfer Luminescence Magnesium Manganese ions Momentum nanopores Nanotechnology Nanowires Optoelectronic devices Phosphors Photoluminescence Photons Positron annihilation positron annihilation spectroscopy Reducing agents Scanning electron microscopy Spectroscopy Spectrum analysis Synthesis Thermal conductivity Voids X-ray diffraction γ‐Al2O3 nanophosphor |
title | Analysis of structural defects and their influence on red‐emitting γ‐Al2O3:Mn4+,Mg2+ nanowires using positron annihilation spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20structural%20defects%20and%20their%20influence%20on%20red%E2%80%90emitting%20%CE%B3%E2%80%90Al2O3:Mn4+,Mg2+%20nanowires%20using%20positron%20annihilation%20spectroscopy&rft.jtitle=Luminescence%20(Chichester,%20England)&rft.au=Hue,%20Pham%20Thi&rft.date=2024-09&rft.volume=39&rft.issue=9&rft.spage=e4881&rft.epage=n/a&rft.pages=e4881-n/a&rft.issn=1522-7235&rft.eissn=1522-7243&rft_id=info:doi/10.1002/bio.4881&rft_dat=%3Cproquest_wiley%3E3097852124%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1841-a245bd46a411a3cb587351c50cc2ec8531710c50527f14dbf283a9d802af3ee63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3109560827&rft_id=info:pmid/&rfr_iscdi=true |