Loading…

Software to estimate −33 and −1500kPa soil water retention using the non-parametric k-Nearest Neighbor technique

A computer tool has been developed that uses a k-Nearest Neighbor (k-NN) lazy learning algorithm to estimate soil water retention at -33 and -1500kPa matric potentials and its uncertainty. The user can customize the provided source data collection to accommodate specific local needs. Ad hoc calculat...

Full description

Saved in:
Bibliographic Details
Published in:Environmental modelling & software : with environment data news 2008-02, Vol.23 (2), p.254-255
Main Authors: Nemes, A., Roberts, R.T., Rawls, W.J., Pachepsky, Ya.A., van Genuchten, M.Th
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1601-eacc9b9c0f993d77dc41ca870bc51b6f92a50f70676e7dcca67233b9ae19be723
cites cdi_FETCH-LOGICAL-c1601-eacc9b9c0f993d77dc41ca870bc51b6f92a50f70676e7dcca67233b9ae19be723
container_end_page 255
container_issue 2
container_start_page 254
container_title Environmental modelling & software : with environment data news
container_volume 23
creator Nemes, A.
Roberts, R.T.
Rawls, W.J.
Pachepsky, Ya.A.
van Genuchten, M.Th
description A computer tool has been developed that uses a k-Nearest Neighbor (k-NN) lazy learning algorithm to estimate soil water retention at -33 and -1500kPa matric potentials and its uncertainty. The user can customize the provided source data collection to accommodate specific local needs. Ad hoc calculations make this technique a competitive alternative to publish pedotransfer equations, as re-development of such equations is not needed when new data become available.
doi_str_mv 10.1016/j.envsoft.2007.05.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30984561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20616981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1601-eacc9b9c0f993d77dc41ca870bc51b6f92a50f70676e7dcca67233b9ae19be723</originalsourceid><addsrcrecordid>eNqFkctOwzAQRbMAiVL4BCSv2CWM83DiJap4SVVBAtaW405at6ldbJeKP2DNJ_IlOGr3rOZKc3RHmpMkVxQyCpTdrDI0n952IcsB6gyqDGhzkoxowcq0oVV-lpx7vwKAmMtREl4ju5cOSbAEfdAbGZD8fv8UBZFmPiRaAaxfJPFW92Qf1444DGiCtobsvDYLEpZIjDXpVjq5weC0Iut0hrHWBzJDvVi21pGAamn0xw4vktNO9h4vj3OcvN_fvU0e0-nzw9PkdpoqyoCmKJXiLVfQcV7M63quSqpkU0OrKtqyjueygq4GVjOMSyVZnRdFyyVS3mLM4-T60Lt1Np71QWy0V9j30qDdeVEAb8qK0X_BHBhlvBnA6gAqZ7132Imtiy9zX4KCGASIlTgKEIMAAZWIAoo_uduBHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20616981</pqid></control><display><type>article</type><title>Software to estimate −33 and −1500kPa soil water retention using the non-parametric k-Nearest Neighbor technique</title><source>Elsevier</source><creator>Nemes, A. ; Roberts, R.T. ; Rawls, W.J. ; Pachepsky, Ya.A. ; van Genuchten, M.Th</creator><creatorcontrib>Nemes, A. ; Roberts, R.T. ; Rawls, W.J. ; Pachepsky, Ya.A. ; van Genuchten, M.Th</creatorcontrib><description>A computer tool has been developed that uses a k-Nearest Neighbor (k-NN) lazy learning algorithm to estimate soil water retention at -33 and -1500kPa matric potentials and its uncertainty. The user can customize the provided source data collection to accommodate specific local needs. Ad hoc calculations make this technique a competitive alternative to publish pedotransfer equations, as re-development of such equations is not needed when new data become available.</description><identifier>ISSN: 1364-8152</identifier><identifier>DOI: 10.1016/j.envsoft.2007.05.018</identifier><language>eng</language><ispartof>Environmental modelling &amp; software : with environment data news, 2008-02, Vol.23 (2), p.254-255</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1601-eacc9b9c0f993d77dc41ca870bc51b6f92a50f70676e7dcca67233b9ae19be723</citedby><cites>FETCH-LOGICAL-c1601-eacc9b9c0f993d77dc41ca870bc51b6f92a50f70676e7dcca67233b9ae19be723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Nemes, A.</creatorcontrib><creatorcontrib>Roberts, R.T.</creatorcontrib><creatorcontrib>Rawls, W.J.</creatorcontrib><creatorcontrib>Pachepsky, Ya.A.</creatorcontrib><creatorcontrib>van Genuchten, M.Th</creatorcontrib><title>Software to estimate −33 and −1500kPa soil water retention using the non-parametric k-Nearest Neighbor technique</title><title>Environmental modelling &amp; software : with environment data news</title><description>A computer tool has been developed that uses a k-Nearest Neighbor (k-NN) lazy learning algorithm to estimate soil water retention at -33 and -1500kPa matric potentials and its uncertainty. The user can customize the provided source data collection to accommodate specific local needs. Ad hoc calculations make this technique a competitive alternative to publish pedotransfer equations, as re-development of such equations is not needed when new data become available.</description><issn>1364-8152</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRbMAiVL4BCSv2CWM83DiJap4SVVBAtaW405at6ldbJeKP2DNJ_IlOGr3rOZKc3RHmpMkVxQyCpTdrDI0n952IcsB6gyqDGhzkoxowcq0oVV-lpx7vwKAmMtREl4ju5cOSbAEfdAbGZD8fv8UBZFmPiRaAaxfJPFW92Qf1444DGiCtobsvDYLEpZIjDXpVjq5weC0Iut0hrHWBzJDvVi21pGAamn0xw4vktNO9h4vj3OcvN_fvU0e0-nzw9PkdpoqyoCmKJXiLVfQcV7M63quSqpkU0OrKtqyjueygq4GVjOMSyVZnRdFyyVS3mLM4-T60Lt1Np71QWy0V9j30qDdeVEAb8qK0X_BHBhlvBnA6gAqZ7132Imtiy9zX4KCGASIlTgKEIMAAZWIAoo_uduBHQ</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Nemes, A.</creator><creator>Roberts, R.T.</creator><creator>Rawls, W.J.</creator><creator>Pachepsky, Ya.A.</creator><creator>van Genuchten, M.Th</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080201</creationdate><title>Software to estimate −33 and −1500kPa soil water retention using the non-parametric k-Nearest Neighbor technique</title><author>Nemes, A. ; Roberts, R.T. ; Rawls, W.J. ; Pachepsky, Ya.A. ; van Genuchten, M.Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1601-eacc9b9c0f993d77dc41ca870bc51b6f92a50f70676e7dcca67233b9ae19be723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemes, A.</creatorcontrib><creatorcontrib>Roberts, R.T.</creatorcontrib><creatorcontrib>Rawls, W.J.</creatorcontrib><creatorcontrib>Pachepsky, Ya.A.</creatorcontrib><creatorcontrib>van Genuchten, M.Th</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemes, A.</au><au>Roberts, R.T.</au><au>Rawls, W.J.</au><au>Pachepsky, Ya.A.</au><au>van Genuchten, M.Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Software to estimate −33 and −1500kPa soil water retention using the non-parametric k-Nearest Neighbor technique</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>23</volume><issue>2</issue><spage>254</spage><epage>255</epage><pages>254-255</pages><issn>1364-8152</issn><abstract>A computer tool has been developed that uses a k-Nearest Neighbor (k-NN) lazy learning algorithm to estimate soil water retention at -33 and -1500kPa matric potentials and its uncertainty. The user can customize the provided source data collection to accommodate specific local needs. Ad hoc calculations make this technique a competitive alternative to publish pedotransfer equations, as re-development of such equations is not needed when new data become available.</abstract><doi>10.1016/j.envsoft.2007.05.018</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2008-02, Vol.23 (2), p.254-255
issn 1364-8152
language eng
recordid cdi_proquest_miscellaneous_30984561
source Elsevier
title Software to estimate −33 and −1500kPa soil water retention using the non-parametric k-Nearest Neighbor technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Software%20to%20estimate%20%E2%88%9233%20and%20%E2%88%921500kPa%20soil%20water%20retention%20using%20the%20non-parametric%20k-Nearest%20Neighbor%20technique&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Nemes,%20A.&rft.date=2008-02-01&rft.volume=23&rft.issue=2&rft.spage=254&rft.epage=255&rft.pages=254-255&rft.issn=1364-8152&rft_id=info:doi/10.1016/j.envsoft.2007.05.018&rft_dat=%3Cproquest_cross%3E20616981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1601-eacc9b9c0f993d77dc41ca870bc51b6f92a50f70676e7dcca67233b9ae19be723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20616981&rft_id=info:pmid/&rfr_iscdi=true