Loading…
Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance
Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge...
Saved in:
Published in: | ACS nano 2024-09, Vol.18 (37), p.25813-25825 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623 |
container_end_page | 25825 |
container_issue | 37 |
container_start_page | 25813 |
container_title | ACS nano |
container_volume | 18 |
creator | Wang, Min Wang, Hui Zhang, Qicheng Chen, Dong Wang, Shuai Wang, Dengyuan Wu, Xuehua Gao, Wei |
description | Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge transfer, causing an undesirable energy storage performance. Herein, rich Mn vacancies are introduced in layered manganous silicates (M2–x S@FA) to expedite K+ diffusion, while enhancing charge storage capacity and prolonging lifespan. In situ characterizations validate the K+ intercalation pseudocapacitance mechanism with evident crystal structure and valence state variations in M2–x S@FA. Both theoretical calculations and electrochemical experimental evaluations elucidate the imperative role of Mn vacancies in enhancing K+ diffusion kinetics and electron transfer through increased interlayer spacing and activated basal plane. Mn vacancies further boost the charge storage capacity by providing additional K+ storage sites, while simultaneously reinforcing local atomic bonding within M2–x S@FA, thereby augmenting structural stability. The assembled aqueous asymmetric solid-state cell, featuring a M2–x S@FA cathode, demonstrates exceptional power and energy densities (144.08 W h kg–1 at 375.80 W kg–1) and ultralong lifespan (100% capacity retention after 10,000 cycles). This work heralds a paradigm whereby modulating cation vacancies in layered TMSs significantly enhances K+ storage and stability for high-energy intercalation pseudocapacitance. |
doi_str_mv | 10.1021/acsnano.4c08979 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099806042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099806042</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi1UREvLmRvysVKV1o4TxzmisqVVtwKpgLhFs-NJ6iprL3Zy2FfgqfFql9568lj65hvN_Ix9lOJSilJeASYPPlxWKEzbtG_YiWyVLoTRv49e6loes_cpPQtRN6bR79ixaktZ6bI8YX8XfnCeKDo_8AfPfwGCR0eJT4Ev_FP-EL8Lnt9nanKYuPN8CVuKZPkD-AE8JeKPbnQIE_E-RH7rhqdi4SkOWw7e8i9zhNWYNX6iiDDC5LLwe6LZBoQNoJt2Y87Y2x7GRB8O7yn7ebP4cX1bLL99vbv-vCyglM1UaGMUVlqBpHpVoa37lVKyNwoAW13bRmLTKESSppdQmwYEWgvWtBUQ6lKdsvO9dxPDn5nS1K1dQhrHvEqYU6dE2xqhRbVDr_YoxpBSpL7bRLeGuO2k6HYBdIcAukMAuePTQT6v1mRf-P8Xz8DFHsid3XOYo8-7vqr7BxDCk94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099806042</pqid></control><display><type>article</type><title>Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Min ; Wang, Hui ; Zhang, Qicheng ; Chen, Dong ; Wang, Shuai ; Wang, Dengyuan ; Wu, Xuehua ; Gao, Wei</creator><creatorcontrib>Wang, Min ; Wang, Hui ; Zhang, Qicheng ; Chen, Dong ; Wang, Shuai ; Wang, Dengyuan ; Wu, Xuehua ; Gao, Wei</creatorcontrib><description>Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge transfer, causing an undesirable energy storage performance. Herein, rich Mn vacancies are introduced in layered manganous silicates (M2–x S@FA) to expedite K+ diffusion, while enhancing charge storage capacity and prolonging lifespan. In situ characterizations validate the K+ intercalation pseudocapacitance mechanism with evident crystal structure and valence state variations in M2–x S@FA. Both theoretical calculations and electrochemical experimental evaluations elucidate the imperative role of Mn vacancies in enhancing K+ diffusion kinetics and electron transfer through increased interlayer spacing and activated basal plane. Mn vacancies further boost the charge storage capacity by providing additional K+ storage sites, while simultaneously reinforcing local atomic bonding within M2–x S@FA, thereby augmenting structural stability. The assembled aqueous asymmetric solid-state cell, featuring a M2–x S@FA cathode, demonstrates exceptional power and energy densities (144.08 W h kg–1 at 375.80 W kg–1) and ultralong lifespan (100% capacity retention after 10,000 cycles). This work heralds a paradigm whereby modulating cation vacancies in layered TMSs significantly enhances K+ storage and stability for high-energy intercalation pseudocapacitance.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c08979</identifier><identifier>PMID: 39214622</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-09, Vol.18 (37), p.25813-25825</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623</cites><orcidid>0000-0003-3111-795X ; 0000-0002-1869-8393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39214622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Qicheng</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Wang, Dengyuan</creatorcontrib><creatorcontrib>Wu, Xuehua</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><title>Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge transfer, causing an undesirable energy storage performance. Herein, rich Mn vacancies are introduced in layered manganous silicates (M2–x S@FA) to expedite K+ diffusion, while enhancing charge storage capacity and prolonging lifespan. In situ characterizations validate the K+ intercalation pseudocapacitance mechanism with evident crystal structure and valence state variations in M2–x S@FA. Both theoretical calculations and electrochemical experimental evaluations elucidate the imperative role of Mn vacancies in enhancing K+ diffusion kinetics and electron transfer through increased interlayer spacing and activated basal plane. Mn vacancies further boost the charge storage capacity by providing additional K+ storage sites, while simultaneously reinforcing local atomic bonding within M2–x S@FA, thereby augmenting structural stability. The assembled aqueous asymmetric solid-state cell, featuring a M2–x S@FA cathode, demonstrates exceptional power and energy densities (144.08 W h kg–1 at 375.80 W kg–1) and ultralong lifespan (100% capacity retention after 10,000 cycles). This work heralds a paradigm whereby modulating cation vacancies in layered TMSs significantly enhances K+ storage and stability for high-energy intercalation pseudocapacitance.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi1UREvLmRvysVKV1o4TxzmisqVVtwKpgLhFs-NJ6iprL3Zy2FfgqfFql9568lj65hvN_Ix9lOJSilJeASYPPlxWKEzbtG_YiWyVLoTRv49e6loes_cpPQtRN6bR79ixaktZ6bI8YX8XfnCeKDo_8AfPfwGCR0eJT4Ev_FP-EL8Lnt9nanKYuPN8CVuKZPkD-AE8JeKPbnQIE_E-RH7rhqdi4SkOWw7e8i9zhNWYNX6iiDDC5LLwe6LZBoQNoJt2Y87Y2x7GRB8O7yn7ebP4cX1bLL99vbv-vCyglM1UaGMUVlqBpHpVoa37lVKyNwoAW13bRmLTKESSppdQmwYEWgvWtBUQ6lKdsvO9dxPDn5nS1K1dQhrHvEqYU6dE2xqhRbVDr_YoxpBSpL7bRLeGuO2k6HYBdIcAukMAuePTQT6v1mRf-P8Xz8DFHsid3XOYo8-7vqr7BxDCk94</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Wang, Min</creator><creator>Wang, Hui</creator><creator>Zhang, Qicheng</creator><creator>Chen, Dong</creator><creator>Wang, Shuai</creator><creator>Wang, Dengyuan</creator><creator>Wu, Xuehua</creator><creator>Gao, Wei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3111-795X</orcidid><orcidid>https://orcid.org/0000-0002-1869-8393</orcidid></search><sort><creationdate>20240917</creationdate><title>Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance</title><author>Wang, Min ; Wang, Hui ; Zhang, Qicheng ; Chen, Dong ; Wang, Shuai ; Wang, Dengyuan ; Wu, Xuehua ; Gao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Qicheng</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Wang, Dengyuan</creatorcontrib><creatorcontrib>Wu, Xuehua</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Min</au><au>Wang, Hui</au><au>Zhang, Qicheng</au><au>Chen, Dong</au><au>Wang, Shuai</au><au>Wang, Dengyuan</au><au>Wu, Xuehua</au><au>Gao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-09-17</date><risdate>2024</risdate><volume>18</volume><issue>37</issue><spage>25813</spage><epage>25825</epage><pages>25813-25825</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge transfer, causing an undesirable energy storage performance. Herein, rich Mn vacancies are introduced in layered manganous silicates (M2–x S@FA) to expedite K+ diffusion, while enhancing charge storage capacity and prolonging lifespan. In situ characterizations validate the K+ intercalation pseudocapacitance mechanism with evident crystal structure and valence state variations in M2–x S@FA. Both theoretical calculations and electrochemical experimental evaluations elucidate the imperative role of Mn vacancies in enhancing K+ diffusion kinetics and electron transfer through increased interlayer spacing and activated basal plane. Mn vacancies further boost the charge storage capacity by providing additional K+ storage sites, while simultaneously reinforcing local atomic bonding within M2–x S@FA, thereby augmenting structural stability. The assembled aqueous asymmetric solid-state cell, featuring a M2–x S@FA cathode, demonstrates exceptional power and energy densities (144.08 W h kg–1 at 375.80 W kg–1) and ultralong lifespan (100% capacity retention after 10,000 cycles). This work heralds a paradigm whereby modulating cation vacancies in layered TMSs significantly enhances K+ storage and stability for high-energy intercalation pseudocapacitance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39214622</pmid><doi>10.1021/acsnano.4c08979</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3111-795X</orcidid><orcidid>https://orcid.org/0000-0002-1869-8393</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-09, Vol.18 (37), p.25813-25825 |
issn | 1936-0851 1936-086X 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_3099806042 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Mn%20Vacancies%20to%20Enhance%20Ion%20Kinetics%20in%20Layered%20Manganese%20Silicate%20for%20High-Energy%20and%20Durable%20Intercalation%20Pseudocapacitance&rft.jtitle=ACS%20nano&rft.au=Wang,%20Min&rft.date=2024-09-17&rft.volume=18&rft.issue=37&rft.spage=25813&rft.epage=25825&rft.pages=25813-25825&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c08979&rft_dat=%3Cproquest_cross%3E3099806042%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3099806042&rft_id=info:pmid/39214622&rfr_iscdi=true |