Loading…

Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance

Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2024-09, Vol.18 (37), p.25813-25825
Main Authors: Wang, Min, Wang, Hui, Zhang, Qicheng, Chen, Dong, Wang, Shuai, Wang, Dengyuan, Wu, Xuehua, Gao, Wei
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623
container_end_page 25825
container_issue 37
container_start_page 25813
container_title ACS nano
container_volume 18
creator Wang, Min
Wang, Hui
Zhang, Qicheng
Chen, Dong
Wang, Shuai
Wang, Dengyuan
Wu, Xuehua
Gao, Wei
description Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge transfer, causing an undesirable energy storage performance. Herein, rich Mn vacancies are introduced in layered manganous silicates (M2–x S@FA) to expedite K+ diffusion, while enhancing charge storage capacity and prolonging lifespan. In situ characterizations validate the K+ intercalation pseudocapacitance mechanism with evident crystal structure and valence state variations in M2–x S@FA. Both theoretical calculations and electrochemical experimental evaluations elucidate the imperative role of Mn vacancies in enhancing K+ diffusion kinetics and electron transfer through increased interlayer spacing and activated basal plane. Mn vacancies further boost the charge storage capacity by providing additional K+ storage sites, while simultaneously reinforcing local atomic bonding within M2–x S@FA, thereby augmenting structural stability. The assembled aqueous asymmetric solid-state cell, featuring a M2–x S@FA cathode, demonstrates exceptional power and energy densities (144.08 W h kg–1 at 375.80 W kg–1) and ultralong lifespan (100% capacity retention after 10,000 cycles). This work heralds a paradigm whereby modulating cation vacancies in layered TMSs significantly enhances K+ storage and stability for high-energy intercalation pseudocapacitance.
doi_str_mv 10.1021/acsnano.4c08979
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099806042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099806042</sourcerecordid><originalsourceid>FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi1UREvLmRvysVKV1o4TxzmisqVVtwKpgLhFs-NJ6iprL3Zy2FfgqfFql9568lj65hvN_Ix9lOJSilJeASYPPlxWKEzbtG_YiWyVLoTRv49e6loes_cpPQtRN6bR79ixaktZ6bI8YX8XfnCeKDo_8AfPfwGCR0eJT4Ev_FP-EL8Lnt9nanKYuPN8CVuKZPkD-AE8JeKPbnQIE_E-RH7rhqdi4SkOWw7e8i9zhNWYNX6iiDDC5LLwe6LZBoQNoJt2Y87Y2x7GRB8O7yn7ebP4cX1bLL99vbv-vCyglM1UaGMUVlqBpHpVoa37lVKyNwoAW13bRmLTKESSppdQmwYEWgvWtBUQ6lKdsvO9dxPDn5nS1K1dQhrHvEqYU6dE2xqhRbVDr_YoxpBSpL7bRLeGuO2k6HYBdIcAukMAuePTQT6v1mRf-P8Xz8DFHsid3XOYo8-7vqr7BxDCk94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099806042</pqid></control><display><type>article</type><title>Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Min ; Wang, Hui ; Zhang, Qicheng ; Chen, Dong ; Wang, Shuai ; Wang, Dengyuan ; Wu, Xuehua ; Gao, Wei</creator><creatorcontrib>Wang, Min ; Wang, Hui ; Zhang, Qicheng ; Chen, Dong ; Wang, Shuai ; Wang, Dengyuan ; Wu, Xuehua ; Gao, Wei</creatorcontrib><description>Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge transfer, causing an undesirable energy storage performance. Herein, rich Mn vacancies are introduced in layered manganous silicates (M2–x S@FA) to expedite K+ diffusion, while enhancing charge storage capacity and prolonging lifespan. In situ characterizations validate the K+ intercalation pseudocapacitance mechanism with evident crystal structure and valence state variations in M2–x S@FA. Both theoretical calculations and electrochemical experimental evaluations elucidate the imperative role of Mn vacancies in enhancing K+ diffusion kinetics and electron transfer through increased interlayer spacing and activated basal plane. Mn vacancies further boost the charge storage capacity by providing additional K+ storage sites, while simultaneously reinforcing local atomic bonding within M2–x S@FA, thereby augmenting structural stability. The assembled aqueous asymmetric solid-state cell, featuring a M2–x S@FA cathode, demonstrates exceptional power and energy densities (144.08 W h kg–1 at 375.80 W kg–1) and ultralong lifespan (100% capacity retention after 10,000 cycles). This work heralds a paradigm whereby modulating cation vacancies in layered TMSs significantly enhances K+ storage and stability for high-energy intercalation pseudocapacitance.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c08979</identifier><identifier>PMID: 39214622</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2024-09, Vol.18 (37), p.25813-25825</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623</cites><orcidid>0000-0003-3111-795X ; 0000-0002-1869-8393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39214622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Qicheng</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Wang, Dengyuan</creatorcontrib><creatorcontrib>Wu, Xuehua</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><title>Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge transfer, causing an undesirable energy storage performance. Herein, rich Mn vacancies are introduced in layered manganous silicates (M2–x S@FA) to expedite K+ diffusion, while enhancing charge storage capacity and prolonging lifespan. In situ characterizations validate the K+ intercalation pseudocapacitance mechanism with evident crystal structure and valence state variations in M2–x S@FA. Both theoretical calculations and electrochemical experimental evaluations elucidate the imperative role of Mn vacancies in enhancing K+ diffusion kinetics and electron transfer through increased interlayer spacing and activated basal plane. Mn vacancies further boost the charge storage capacity by providing additional K+ storage sites, while simultaneously reinforcing local atomic bonding within M2–x S@FA, thereby augmenting structural stability. The assembled aqueous asymmetric solid-state cell, featuring a M2–x S@FA cathode, demonstrates exceptional power and energy densities (144.08 W h kg–1 at 375.80 W kg–1) and ultralong lifespan (100% capacity retention after 10,000 cycles). This work heralds a paradigm whereby modulating cation vacancies in layered TMSs significantly enhances K+ storage and stability for high-energy intercalation pseudocapacitance.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhi1UREvLmRvysVKV1o4TxzmisqVVtwKpgLhFs-NJ6iprL3Zy2FfgqfFql9568lj65hvN_Ix9lOJSilJeASYPPlxWKEzbtG_YiWyVLoTRv49e6loes_cpPQtRN6bR79ixaktZ6bI8YX8XfnCeKDo_8AfPfwGCR0eJT4Ev_FP-EL8Lnt9nanKYuPN8CVuKZPkD-AE8JeKPbnQIE_E-RH7rhqdi4SkOWw7e8i9zhNWYNX6iiDDC5LLwe6LZBoQNoJt2Y87Y2x7GRB8O7yn7ebP4cX1bLL99vbv-vCyglM1UaGMUVlqBpHpVoa37lVKyNwoAW13bRmLTKESSppdQmwYEWgvWtBUQ6lKdsvO9dxPDn5nS1K1dQhrHvEqYU6dE2xqhRbVDr_YoxpBSpL7bRLeGuO2k6HYBdIcAukMAuePTQT6v1mRf-P8Xz8DFHsid3XOYo8-7vqr7BxDCk94</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Wang, Min</creator><creator>Wang, Hui</creator><creator>Zhang, Qicheng</creator><creator>Chen, Dong</creator><creator>Wang, Shuai</creator><creator>Wang, Dengyuan</creator><creator>Wu, Xuehua</creator><creator>Gao, Wei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3111-795X</orcidid><orcidid>https://orcid.org/0000-0002-1869-8393</orcidid></search><sort><creationdate>20240917</creationdate><title>Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance</title><author>Wang, Min ; Wang, Hui ; Zhang, Qicheng ; Chen, Dong ; Wang, Shuai ; Wang, Dengyuan ; Wu, Xuehua ; Gao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Zhang, Qicheng</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Wang, Dengyuan</creatorcontrib><creatorcontrib>Wu, Xuehua</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Min</au><au>Wang, Hui</au><au>Zhang, Qicheng</au><au>Chen, Dong</au><au>Wang, Shuai</au><au>Wang, Dengyuan</au><au>Wu, Xuehua</au><au>Gao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-09-17</date><risdate>2024</risdate><volume>18</volume><issue>37</issue><spage>25813</spage><epage>25825</epage><pages>25813-25825</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Transition metal silicates (TMSs) are potential electrodes for aqueous metal-ion intercalation pseudocapacitors owing to their superior theoretical capacity and high structural stability. However, the narrow interlayer spacing and intrinsic inert basal plane of TMSs lead to sluggish ions and charge transfer, causing an undesirable energy storage performance. Herein, rich Mn vacancies are introduced in layered manganous silicates (M2–x S@FA) to expedite K+ diffusion, while enhancing charge storage capacity and prolonging lifespan. In situ characterizations validate the K+ intercalation pseudocapacitance mechanism with evident crystal structure and valence state variations in M2–x S@FA. Both theoretical calculations and electrochemical experimental evaluations elucidate the imperative role of Mn vacancies in enhancing K+ diffusion kinetics and electron transfer through increased interlayer spacing and activated basal plane. Mn vacancies further boost the charge storage capacity by providing additional K+ storage sites, while simultaneously reinforcing local atomic bonding within M2–x S@FA, thereby augmenting structural stability. The assembled aqueous asymmetric solid-state cell, featuring a M2–x S@FA cathode, demonstrates exceptional power and energy densities (144.08 W h kg–1 at 375.80 W kg–1) and ultralong lifespan (100% capacity retention after 10,000 cycles). This work heralds a paradigm whereby modulating cation vacancies in layered TMSs significantly enhances K+ storage and stability for high-energy intercalation pseudocapacitance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39214622</pmid><doi>10.1021/acsnano.4c08979</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3111-795X</orcidid><orcidid>https://orcid.org/0000-0002-1869-8393</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-09, Vol.18 (37), p.25813-25825
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3099806042
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Engineering Mn Vacancies to Enhance Ion Kinetics in Layered Manganese Silicate for High-Energy and Durable Intercalation Pseudocapacitance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Mn%20Vacancies%20to%20Enhance%20Ion%20Kinetics%20in%20Layered%20Manganese%20Silicate%20for%20High-Energy%20and%20Durable%20Intercalation%20Pseudocapacitance&rft.jtitle=ACS%20nano&rft.au=Wang,%20Min&rft.date=2024-09-17&rft.volume=18&rft.issue=37&rft.spage=25813&rft.epage=25825&rft.pages=25813-25825&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c08979&rft_dat=%3Cproquest_cross%3E3099806042%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a217t-6883c463a1e5b4cd5fb331f83aac965d71c773cce18f1a587a0cddad894aec623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3099806042&rft_id=info:pmid/39214622&rfr_iscdi=true