Loading…
Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process
Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the...
Saved in:
Published in: | Environmental science & technology 2024-09, Vol.58 (37), p.16611-16620 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253 |
container_end_page | 16620 |
container_issue | 37 |
container_start_page | 16611 |
container_title | Environmental science & technology |
container_volume | 58 |
creator | Xu, Qiongying Wang, Qiandi Yang, Jiaqi Liu, Wenzong Wang, Aijie |
description | Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10–50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C–H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm. |
doi_str_mv | 10.1021/acs.est.4c04449 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099806435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108396929</sourcerecordid><originalsourceid>FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253</originalsourceid><addsrcrecordid>eNp1kcFLHDEUxoNYdGs9eysBL4Uy60syGZNjWWoVLIrY1tvwNnmjI5nNNpkR5r93ll09FHp6l9_3vY_vY-xEwFyAFGfo8pxyPy8dlGVp99hMaAmFNlrssxmAUIVV1cMh-5jzMwBIBeaAHSorhVZGz5i_IxdfKLWrR_4bw4DLQHzxRF3rMGTepNjx2xjGdYrrMdCK-B_MPfGXFjnyn23wfIE9hjH3xUUi4pejT7F_otRh4LcpOsr5E_vQTG50vLtH7NfF9_vFZXF98-Nq8e26QFnqvkBSWjmjPBknzfl5WVVeejBVJaWXAFrKphEI6KUGZRA0SCOWWArnLUqtjtiXre-U9u8w9VJ3bXYUAq4oDrlWYK2BqlQb9PQf9DkOaTWlq5UAo2xlpZ2osy3lUsw5UVOvU9thGmsB9WaAehqg3qh3A0yKzzvfYdmRf-ffGp-Ar1tgo3z_-T-7V_HZkDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108396929</pqid></control><display><type>article</type><title>Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Xu, Qiongying ; Wang, Qiandi ; Yang, Jiaqi ; Liu, Wenzong ; Wang, Aijie</creator><creatorcontrib>Xu, Qiongying ; Wang, Qiandi ; Yang, Jiaqi ; Liu, Wenzong ; Wang, Aijie</creatorcontrib><description>Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10–50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C–H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c04449</identifier><identifier>PMID: 39215385</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetic acid ; Addition polymerization ; Atomic properties ; Carbon ; Carbonyl compounds ; Carbonyl groups ; Carbonyls ; Catalysis ; Catalysts ; Chemical recovery ; Circular economy ; Cost analysis ; Cyclotron resonance ; Density functional theory ; Economic analysis ; Emission analysis ; Fourier analysis ; Fourier transforms ; High temperature ; Hydrogen peroxide ; Hydrothermal treatment ; Mass spectrometry ; Mass spectroscopy ; Oxidation ; Oxidation-Reduction ; Physico-Chemical Treatment and Resource Recovery ; Plastic pollution ; Polymers ; Polypropylene ; Polypropylenes - chemistry ; Recovery ; Recycling ; Scale (corrosion) ; Spectral analysis ; Spectrum analysis ; Technology assessment</subject><ispartof>Environmental science & technology, 2024-09, Vol.58 (37), p.16611-16620</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 17, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253</cites><orcidid>0000-0003-4974-5436 ; 0000-0002-1331-6480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39215385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Qiongying</creatorcontrib><creatorcontrib>Wang, Qiandi</creatorcontrib><creatorcontrib>Yang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Wenzong</creatorcontrib><creatorcontrib>Wang, Aijie</creatorcontrib><title>Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10–50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C–H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.</description><subject>Acetic acid</subject><subject>Addition polymerization</subject><subject>Atomic properties</subject><subject>Carbon</subject><subject>Carbonyl compounds</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical recovery</subject><subject>Circular economy</subject><subject>Cost analysis</subject><subject>Cyclotron resonance</subject><subject>Density functional theory</subject><subject>Economic analysis</subject><subject>Emission analysis</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>High temperature</subject><subject>Hydrogen peroxide</subject><subject>Hydrothermal treatment</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Physico-Chemical Treatment and Resource Recovery</subject><subject>Plastic pollution</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Polypropylenes - chemistry</subject><subject>Recovery</subject><subject>Recycling</subject><subject>Scale (corrosion)</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Technology assessment</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kcFLHDEUxoNYdGs9eysBL4Uy60syGZNjWWoVLIrY1tvwNnmjI5nNNpkR5r93ll09FHp6l9_3vY_vY-xEwFyAFGfo8pxyPy8dlGVp99hMaAmFNlrssxmAUIVV1cMh-5jzMwBIBeaAHSorhVZGz5i_IxdfKLWrR_4bw4DLQHzxRF3rMGTepNjx2xjGdYrrMdCK-B_MPfGXFjnyn23wfIE9hjH3xUUi4pejT7F_otRh4LcpOsr5E_vQTG50vLtH7NfF9_vFZXF98-Nq8e26QFnqvkBSWjmjPBknzfl5WVVeejBVJaWXAFrKphEI6KUGZRA0SCOWWArnLUqtjtiXre-U9u8w9VJ3bXYUAq4oDrlWYK2BqlQb9PQf9DkOaTWlq5UAo2xlpZ2osy3lUsw5UVOvU9thGmsB9WaAehqg3qh3A0yKzzvfYdmRf-ffGp-Ar1tgo3z_-T-7V_HZkDk</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Xu, Qiongying</creator><creator>Wang, Qiandi</creator><creator>Yang, Jiaqi</creator><creator>Liu, Wenzong</creator><creator>Wang, Aijie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4974-5436</orcidid><orcidid>https://orcid.org/0000-0002-1331-6480</orcidid></search><sort><creationdate>20240917</creationdate><title>Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process</title><author>Xu, Qiongying ; Wang, Qiandi ; Yang, Jiaqi ; Liu, Wenzong ; Wang, Aijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic acid</topic><topic>Addition polymerization</topic><topic>Atomic properties</topic><topic>Carbon</topic><topic>Carbonyl compounds</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical recovery</topic><topic>Circular economy</topic><topic>Cost analysis</topic><topic>Cyclotron resonance</topic><topic>Density functional theory</topic><topic>Economic analysis</topic><topic>Emission analysis</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>High temperature</topic><topic>Hydrogen peroxide</topic><topic>Hydrothermal treatment</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Physico-Chemical Treatment and Resource Recovery</topic><topic>Plastic pollution</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Polypropylenes - chemistry</topic><topic>Recovery</topic><topic>Recycling</topic><topic>Scale (corrosion)</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qiongying</creatorcontrib><creatorcontrib>Wang, Qiandi</creatorcontrib><creatorcontrib>Yang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Wenzong</creatorcontrib><creatorcontrib>Wang, Aijie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qiongying</au><au>Wang, Qiandi</au><au>Yang, Jiaqi</au><au>Liu, Wenzong</au><au>Wang, Aijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-09-17</date><risdate>2024</risdate><volume>58</volume><issue>37</issue><spage>16611</spage><epage>16620</epage><pages>16611-16620</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10–50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C–H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39215385</pmid><doi>10.1021/acs.est.4c04449</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4974-5436</orcidid><orcidid>https://orcid.org/0000-0002-1331-6480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2024-09, Vol.58 (37), p.16611-16620 |
issn | 0013-936X 1520-5851 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_3099806435 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Acetic acid Addition polymerization Atomic properties Carbon Carbonyl compounds Carbonyl groups Carbonyls Catalysis Catalysts Chemical recovery Circular economy Cost analysis Cyclotron resonance Density functional theory Economic analysis Emission analysis Fourier analysis Fourier transforms High temperature Hydrogen peroxide Hydrothermal treatment Mass spectrometry Mass spectroscopy Oxidation Oxidation-Reduction Physico-Chemical Treatment and Resource Recovery Plastic pollution Polymers Polypropylene Polypropylenes - chemistry Recovery Recycling Scale (corrosion) Spectral analysis Spectrum analysis Technology assessment |
title | Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20Valuable%20Chemicals%20from%20Polypropylene%20Waste%20via%20a%20Mild%20Catalyst-Free%20Hydrothermal%20Process&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Xu,%20Qiongying&rft.date=2024-09-17&rft.volume=58&rft.issue=37&rft.spage=16611&rft.epage=16620&rft.pages=16611-16620&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c04449&rft_dat=%3Cproquest_cross%3E3108396929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108396929&rft_id=info:pmid/39215385&rfr_iscdi=true |