Loading…

Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process

Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2024-09, Vol.58 (37), p.16611-16620
Main Authors: Xu, Qiongying, Wang, Qiandi, Yang, Jiaqi, Liu, Wenzong, Wang, Aijie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253
container_end_page 16620
container_issue 37
container_start_page 16611
container_title Environmental science & technology
container_volume 58
creator Xu, Qiongying
Wang, Qiandi
Yang, Jiaqi
Liu, Wenzong
Wang, Aijie
description Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10–50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C–H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.
doi_str_mv 10.1021/acs.est.4c04449
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099806435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108396929</sourcerecordid><originalsourceid>FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253</originalsourceid><addsrcrecordid>eNp1kcFLHDEUxoNYdGs9eysBL4Uy60syGZNjWWoVLIrY1tvwNnmjI5nNNpkR5r93ll09FHp6l9_3vY_vY-xEwFyAFGfo8pxyPy8dlGVp99hMaAmFNlrssxmAUIVV1cMh-5jzMwBIBeaAHSorhVZGz5i_IxdfKLWrR_4bw4DLQHzxRF3rMGTepNjx2xjGdYrrMdCK-B_MPfGXFjnyn23wfIE9hjH3xUUi4pejT7F_otRh4LcpOsr5E_vQTG50vLtH7NfF9_vFZXF98-Nq8e26QFnqvkBSWjmjPBknzfl5WVVeejBVJaWXAFrKphEI6KUGZRA0SCOWWArnLUqtjtiXre-U9u8w9VJ3bXYUAq4oDrlWYK2BqlQb9PQf9DkOaTWlq5UAo2xlpZ2osy3lUsw5UVOvU9thGmsB9WaAehqg3qh3A0yKzzvfYdmRf-ffGp-Ar1tgo3z_-T-7V_HZkDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108396929</pqid></control><display><type>article</type><title>Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Xu, Qiongying ; Wang, Qiandi ; Yang, Jiaqi ; Liu, Wenzong ; Wang, Aijie</creator><creatorcontrib>Xu, Qiongying ; Wang, Qiandi ; Yang, Jiaqi ; Liu, Wenzong ; Wang, Aijie</creatorcontrib><description>Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10–50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C–H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c04449</identifier><identifier>PMID: 39215385</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetic acid ; Addition polymerization ; Atomic properties ; Carbon ; Carbonyl compounds ; Carbonyl groups ; Carbonyls ; Catalysis ; Catalysts ; Chemical recovery ; Circular economy ; Cost analysis ; Cyclotron resonance ; Density functional theory ; Economic analysis ; Emission analysis ; Fourier analysis ; Fourier transforms ; High temperature ; Hydrogen peroxide ; Hydrothermal treatment ; Mass spectrometry ; Mass spectroscopy ; Oxidation ; Oxidation-Reduction ; Physico-Chemical Treatment and Resource Recovery ; Plastic pollution ; Polymers ; Polypropylene ; Polypropylenes - chemistry ; Recovery ; Recycling ; Scale (corrosion) ; Spectral analysis ; Spectrum analysis ; Technology assessment</subject><ispartof>Environmental science &amp; technology, 2024-09, Vol.58 (37), p.16611-16620</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 17, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253</cites><orcidid>0000-0003-4974-5436 ; 0000-0002-1331-6480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39215385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Qiongying</creatorcontrib><creatorcontrib>Wang, Qiandi</creatorcontrib><creatorcontrib>Yang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Wenzong</creatorcontrib><creatorcontrib>Wang, Aijie</creatorcontrib><title>Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10–50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C–H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.</description><subject>Acetic acid</subject><subject>Addition polymerization</subject><subject>Atomic properties</subject><subject>Carbon</subject><subject>Carbonyl compounds</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical recovery</subject><subject>Circular economy</subject><subject>Cost analysis</subject><subject>Cyclotron resonance</subject><subject>Density functional theory</subject><subject>Economic analysis</subject><subject>Emission analysis</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>High temperature</subject><subject>Hydrogen peroxide</subject><subject>Hydrothermal treatment</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Physico-Chemical Treatment and Resource Recovery</subject><subject>Plastic pollution</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Polypropylenes - chemistry</subject><subject>Recovery</subject><subject>Recycling</subject><subject>Scale (corrosion)</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Technology assessment</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kcFLHDEUxoNYdGs9eysBL4Uy60syGZNjWWoVLIrY1tvwNnmjI5nNNpkR5r93ll09FHp6l9_3vY_vY-xEwFyAFGfo8pxyPy8dlGVp99hMaAmFNlrssxmAUIVV1cMh-5jzMwBIBeaAHSorhVZGz5i_IxdfKLWrR_4bw4DLQHzxRF3rMGTepNjx2xjGdYrrMdCK-B_MPfGXFjnyn23wfIE9hjH3xUUi4pejT7F_otRh4LcpOsr5E_vQTG50vLtH7NfF9_vFZXF98-Nq8e26QFnqvkBSWjmjPBknzfl5WVVeejBVJaWXAFrKphEI6KUGZRA0SCOWWArnLUqtjtiXre-U9u8w9VJ3bXYUAq4oDrlWYK2BqlQb9PQf9DkOaTWlq5UAo2xlpZ2osy3lUsw5UVOvU9thGmsB9WaAehqg3qh3A0yKzzvfYdmRf-ffGp-Ar1tgo3z_-T-7V_HZkDk</recordid><startdate>20240917</startdate><enddate>20240917</enddate><creator>Xu, Qiongying</creator><creator>Wang, Qiandi</creator><creator>Yang, Jiaqi</creator><creator>Liu, Wenzong</creator><creator>Wang, Aijie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4974-5436</orcidid><orcidid>https://orcid.org/0000-0002-1331-6480</orcidid></search><sort><creationdate>20240917</creationdate><title>Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process</title><author>Xu, Qiongying ; Wang, Qiandi ; Yang, Jiaqi ; Liu, Wenzong ; Wang, Aijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetic acid</topic><topic>Addition polymerization</topic><topic>Atomic properties</topic><topic>Carbon</topic><topic>Carbonyl compounds</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical recovery</topic><topic>Circular economy</topic><topic>Cost analysis</topic><topic>Cyclotron resonance</topic><topic>Density functional theory</topic><topic>Economic analysis</topic><topic>Emission analysis</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>High temperature</topic><topic>Hydrogen peroxide</topic><topic>Hydrothermal treatment</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Physico-Chemical Treatment and Resource Recovery</topic><topic>Plastic pollution</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Polypropylenes - chemistry</topic><topic>Recovery</topic><topic>Recycling</topic><topic>Scale (corrosion)</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qiongying</creatorcontrib><creatorcontrib>Wang, Qiandi</creatorcontrib><creatorcontrib>Yang, Jiaqi</creatorcontrib><creatorcontrib>Liu, Wenzong</creatorcontrib><creatorcontrib>Wang, Aijie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qiongying</au><au>Wang, Qiandi</au><au>Yang, Jiaqi</au><au>Liu, Wenzong</au><au>Wang, Aijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-09-17</date><risdate>2024</risdate><volume>58</volume><issue>37</issue><spage>16611</spage><epage>16620</epage><pages>16611-16620</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C–C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10–50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C–H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39215385</pmid><doi>10.1021/acs.est.4c04449</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4974-5436</orcidid><orcidid>https://orcid.org/0000-0002-1331-6480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-09, Vol.58 (37), p.16611-16620
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3099806435
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acetic acid
Addition polymerization
Atomic properties
Carbon
Carbonyl compounds
Carbonyl groups
Carbonyls
Catalysis
Catalysts
Chemical recovery
Circular economy
Cost analysis
Cyclotron resonance
Density functional theory
Economic analysis
Emission analysis
Fourier analysis
Fourier transforms
High temperature
Hydrogen peroxide
Hydrothermal treatment
Mass spectrometry
Mass spectroscopy
Oxidation
Oxidation-Reduction
Physico-Chemical Treatment and Resource Recovery
Plastic pollution
Polymers
Polypropylene
Polypropylenes - chemistry
Recovery
Recycling
Scale (corrosion)
Spectral analysis
Spectrum analysis
Technology assessment
title Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20Valuable%20Chemicals%20from%20Polypropylene%20Waste%20via%20a%20Mild%20Catalyst-Free%20Hydrothermal%20Process&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Xu,%20Qiongying&rft.date=2024-09-17&rft.volume=58&rft.issue=37&rft.spage=16611&rft.epage=16620&rft.pages=16611-16620&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c04449&rft_dat=%3Cproquest_cross%3E3108396929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a245t-ae353c83de8c2877466d2d086622d200522ff1a0ad25038a050281ba41cd9a253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108396929&rft_id=info:pmid/39215385&rfr_iscdi=true