Loading…
Urban flooding simulation and flood risk assessment based on the InfoWorks ICM model: A case study of the urban inland rivers in Zhengzhou, China
Urban flooding intensifies with escalating urbanization. This study focuses on Xiong'er river as the study area and couples a 1D/2D urban flooding model using InfoWorks ICM (Integrated Catchment Modeling). Ten scenarios are set respectively with a rainfall return period of 5a 10a, 20a, 50a, and...
Saved in:
Published in: | Water science and technology 2024-08, Vol.90 (4), p.1338-1358 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Urban flooding intensifies with escalating urbanization. This study focuses on Xiong'er river as the study area and couples a 1D/2D urban flooding model using InfoWorks ICM (Integrated Catchment Modeling). Ten scenarios are set respectively with a rainfall return period of 5a 10a, 20a, 50a, and 100a, alongside rainfall durations of 1 and 24 h. Subsequently, the H-V (hazard-vulnerability) method was applied to evaluate urban flooding risk. Three indicators were selected for each of hazard factors and vulnerability factors. The relative weight values of each indicator factor were calculated using the AHP method. The result shows that (1) flood depth, rate, and duration escalate with longer rainfall return periods, yet decrease as the duration of rainfall increases; (2) as the rainfall return period lengthens, the proportion of node overflow rises, whereas it diminishes with longer rainfall durations, leading to an overall overloaded state in the pipeline network; and (3) the distribution in the research area is mainly low-risk areas, with very few extremely high-risk. Medium to high-risk areas are mainly distributed on both sides of the river, in densely built and low-lying urban areas. This study demonstrates that the model can accurately simulate urban flooding and provide insights for flood analyses in comparable regions. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2024.280 |