Loading…

A robust, high-temperature-resistant, protective cellulose gel enabled by multiscale structural engineering

Given the escalating environmental and safety concerns, friendly protective materials with exceptional mechanical properties, biodegradability, and insensitivity to high temperature have received more and more attention. Here, we report a robust cellulosic gel through the multi-scale integration of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-10, Vol.277 (Pt 4), p.134520, Article 134520
Main Authors: Zhang, Shaoyu, Long, Qian, Jiang, Geyuan, Li, Xin, Zhou, Jianhong, Shao, Lupeng, Zeng, Suqing, Zhao, Dawei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-e82d163618d8d3a0e79a34b446a01923407607a5fd6a5fcca75efaec0411ec3e3
container_end_page
container_issue Pt 4
container_start_page 134520
container_title International journal of biological macromolecules
container_volume 277
creator Zhang, Shaoyu
Long, Qian
Jiang, Geyuan
Li, Xin
Zhou, Jianhong
Shao, Lupeng
Zeng, Suqing
Zhao, Dawei
description Given the escalating environmental and safety concerns, friendly protective materials with exceptional mechanical properties, biodegradability, and insensitivity to high temperature have received more and more attention. Here, we report a robust cellulosic gel through the multi-scale integration of cellulose molecular skeleton, nano-reinforced diatomite, and in situ polymerized polyacrylamide molecule. The bottom-up yet cross-scale approach facilitates the formation of cellulosic gel characterized by a highly interconnected hydrogen bond network and nano-enhanced domain, resulting in a tensile strength of up to 13.83 MPa, a Young's modulus exceeding 280 MPa, and an impact strength around 12.38 KJ m−1. Furthermore, this gel exhibits structural stability at temperatures up to 130 °C, good flame retardancy, and complete biodegradability within a span of 35 days. The robust cellulosic gel, acting as a pliable protector, demonstrates exceptional protection for human joints. Our study presents a highly efficient and scalable pathway towards the development of sustainable and robust biomass gels, holding immense potential in intelligent-protective wearables and advanced materials science and engineering. A green and robust cellulosic gel is fabricated by multiscale integration of cellulose molecule, nano-diatomite, and polyacrylamide molecule. The cellulosic gels exhibit excellent mechanical properties, high temperature resistance, biodegradability and exceptional abrasion resistance, showing excellent potential in sustainable intelligent protection. [Display omitted]
doi_str_mv 10.1016/j.ijbiomac.2024.134520
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3099807761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014181302405325X</els_id><sourcerecordid>3099807761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-e82d163618d8d3a0e79a34b446a01923407607a5fd6a5fcca75efaec0411ec3e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EgvL4BZQlC1JmYsdJdlQVLwmJDawtx5kWlzyK7VTq3-OqlC0bW_Kcmbk-jF0jTBFQ3q2mdlXbodNmmkEmpshFnsERm2BZVCkA8GM2ARSYlsjhjJ17v4qvMsfylJ3xKsMCRDlhX7PEDfXow23yaZefaaBuTU6H0VHqyFsfdB9razcEMsFuKDHUtmM7eEqW1CbU67qlJqm3STe2wXqjW0p8cKOJM_QOWNqeyNl-eclOFrr1dPV7X7CPx4f3-XP6-vb0Mp-9piYTeUipzBqUXGLZlA3XQEWluaiFkBqwyriAQkKh80Uj42GMLnJaaDIgEMlw4hfsZj83pv4eyQfVxVwxtu5pGL3iUFUlFIXEiMo9atzgvaOFWjvbabdVCGonWq3UQbTaiVZ70bHx-nfHWHfU_LUdzEbgfg9Q_OnGklPeWOoNNdZFk6oZ7H87fgBzO5Ra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099807761</pqid></control><display><type>article</type><title>A robust, high-temperature-resistant, protective cellulose gel enabled by multiscale structural engineering</title><source>ScienceDirect Journals</source><creator>Zhang, Shaoyu ; Long, Qian ; Jiang, Geyuan ; Li, Xin ; Zhou, Jianhong ; Shao, Lupeng ; Zeng, Suqing ; Zhao, Dawei</creator><creatorcontrib>Zhang, Shaoyu ; Long, Qian ; Jiang, Geyuan ; Li, Xin ; Zhou, Jianhong ; Shao, Lupeng ; Zeng, Suqing ; Zhao, Dawei</creatorcontrib><description>Given the escalating environmental and safety concerns, friendly protective materials with exceptional mechanical properties, biodegradability, and insensitivity to high temperature have received more and more attention. Here, we report a robust cellulosic gel through the multi-scale integration of cellulose molecular skeleton, nano-reinforced diatomite, and in situ polymerized polyacrylamide molecule. The bottom-up yet cross-scale approach facilitates the formation of cellulosic gel characterized by a highly interconnected hydrogen bond network and nano-enhanced domain, resulting in a tensile strength of up to 13.83 MPa, a Young's modulus exceeding 280 MPa, and an impact strength around 12.38 KJ m−1. Furthermore, this gel exhibits structural stability at temperatures up to 130 °C, good flame retardancy, and complete biodegradability within a span of 35 days. The robust cellulosic gel, acting as a pliable protector, demonstrates exceptional protection for human joints. Our study presents a highly efficient and scalable pathway towards the development of sustainable and robust biomass gels, holding immense potential in intelligent-protective wearables and advanced materials science and engineering. A green and robust cellulosic gel is fabricated by multiscale integration of cellulose molecule, nano-diatomite, and polyacrylamide molecule. The cellulosic gels exhibit excellent mechanical properties, high temperature resistance, biodegradability and exceptional abrasion resistance, showing excellent potential in sustainable intelligent protection. [Display omitted]</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.134520</identifier><identifier>PMID: 39217048</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Cellulose ; Impact resistance ; Multiscale design ; Protective gel ; Smart device</subject><ispartof>International journal of biological macromolecules, 2024-10, Vol.277 (Pt 4), p.134520, Article 134520</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-e82d163618d8d3a0e79a34b446a01923407607a5fd6a5fcca75efaec0411ec3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39217048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shaoyu</creatorcontrib><creatorcontrib>Long, Qian</creatorcontrib><creatorcontrib>Jiang, Geyuan</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhou, Jianhong</creatorcontrib><creatorcontrib>Shao, Lupeng</creatorcontrib><creatorcontrib>Zeng, Suqing</creatorcontrib><creatorcontrib>Zhao, Dawei</creatorcontrib><title>A robust, high-temperature-resistant, protective cellulose gel enabled by multiscale structural engineering</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Given the escalating environmental and safety concerns, friendly protective materials with exceptional mechanical properties, biodegradability, and insensitivity to high temperature have received more and more attention. Here, we report a robust cellulosic gel through the multi-scale integration of cellulose molecular skeleton, nano-reinforced diatomite, and in situ polymerized polyacrylamide molecule. The bottom-up yet cross-scale approach facilitates the formation of cellulosic gel characterized by a highly interconnected hydrogen bond network and nano-enhanced domain, resulting in a tensile strength of up to 13.83 MPa, a Young's modulus exceeding 280 MPa, and an impact strength around 12.38 KJ m−1. Furthermore, this gel exhibits structural stability at temperatures up to 130 °C, good flame retardancy, and complete biodegradability within a span of 35 days. The robust cellulosic gel, acting as a pliable protector, demonstrates exceptional protection for human joints. Our study presents a highly efficient and scalable pathway towards the development of sustainable and robust biomass gels, holding immense potential in intelligent-protective wearables and advanced materials science and engineering. A green and robust cellulosic gel is fabricated by multiscale integration of cellulose molecule, nano-diatomite, and polyacrylamide molecule. The cellulosic gels exhibit excellent mechanical properties, high temperature resistance, biodegradability and exceptional abrasion resistance, showing excellent potential in sustainable intelligent protection. [Display omitted]</description><subject>Cellulose</subject><subject>Impact resistance</subject><subject>Multiscale design</subject><subject>Protective gel</subject><subject>Smart device</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EgvL4BZQlC1JmYsdJdlQVLwmJDawtx5kWlzyK7VTq3-OqlC0bW_Kcmbk-jF0jTBFQ3q2mdlXbodNmmkEmpshFnsERm2BZVCkA8GM2ARSYlsjhjJ17v4qvMsfylJ3xKsMCRDlhX7PEDfXow23yaZefaaBuTU6H0VHqyFsfdB9razcEMsFuKDHUtmM7eEqW1CbU67qlJqm3STe2wXqjW0p8cKOJM_QOWNqeyNl-eclOFrr1dPV7X7CPx4f3-XP6-vb0Mp-9piYTeUipzBqUXGLZlA3XQEWluaiFkBqwyriAQkKh80Uj42GMLnJaaDIgEMlw4hfsZj83pv4eyQfVxVwxtu5pGL3iUFUlFIXEiMo9atzgvaOFWjvbabdVCGonWq3UQbTaiVZ70bHx-nfHWHfU_LUdzEbgfg9Q_OnGklPeWOoNNdZFk6oZ7H87fgBzO5Ra</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Shaoyu</creator><creator>Long, Qian</creator><creator>Jiang, Geyuan</creator><creator>Li, Xin</creator><creator>Zhou, Jianhong</creator><creator>Shao, Lupeng</creator><creator>Zeng, Suqing</creator><creator>Zhao, Dawei</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241001</creationdate><title>A robust, high-temperature-resistant, protective cellulose gel enabled by multiscale structural engineering</title><author>Zhang, Shaoyu ; Long, Qian ; Jiang, Geyuan ; Li, Xin ; Zhou, Jianhong ; Shao, Lupeng ; Zeng, Suqing ; Zhao, Dawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-e82d163618d8d3a0e79a34b446a01923407607a5fd6a5fcca75efaec0411ec3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cellulose</topic><topic>Impact resistance</topic><topic>Multiscale design</topic><topic>Protective gel</topic><topic>Smart device</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shaoyu</creatorcontrib><creatorcontrib>Long, Qian</creatorcontrib><creatorcontrib>Jiang, Geyuan</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhou, Jianhong</creatorcontrib><creatorcontrib>Shao, Lupeng</creatorcontrib><creatorcontrib>Zeng, Suqing</creatorcontrib><creatorcontrib>Zhao, Dawei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shaoyu</au><au>Long, Qian</au><au>Jiang, Geyuan</au><au>Li, Xin</au><au>Zhou, Jianhong</au><au>Shao, Lupeng</au><au>Zeng, Suqing</au><au>Zhao, Dawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust, high-temperature-resistant, protective cellulose gel enabled by multiscale structural engineering</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>277</volume><issue>Pt 4</issue><spage>134520</spage><pages>134520-</pages><artnum>134520</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Given the escalating environmental and safety concerns, friendly protective materials with exceptional mechanical properties, biodegradability, and insensitivity to high temperature have received more and more attention. Here, we report a robust cellulosic gel through the multi-scale integration of cellulose molecular skeleton, nano-reinforced diatomite, and in situ polymerized polyacrylamide molecule. The bottom-up yet cross-scale approach facilitates the formation of cellulosic gel characterized by a highly interconnected hydrogen bond network and nano-enhanced domain, resulting in a tensile strength of up to 13.83 MPa, a Young's modulus exceeding 280 MPa, and an impact strength around 12.38 KJ m−1. Furthermore, this gel exhibits structural stability at temperatures up to 130 °C, good flame retardancy, and complete biodegradability within a span of 35 days. The robust cellulosic gel, acting as a pliable protector, demonstrates exceptional protection for human joints. Our study presents a highly efficient and scalable pathway towards the development of sustainable and robust biomass gels, holding immense potential in intelligent-protective wearables and advanced materials science and engineering. A green and robust cellulosic gel is fabricated by multiscale integration of cellulose molecule, nano-diatomite, and polyacrylamide molecule. The cellulosic gels exhibit excellent mechanical properties, high temperature resistance, biodegradability and exceptional abrasion resistance, showing excellent potential in sustainable intelligent protection. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39217048</pmid><doi>10.1016/j.ijbiomac.2024.134520</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-10, Vol.277 (Pt 4), p.134520, Article 134520
issn 0141-8130
1879-0003
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3099807761
source ScienceDirect Journals
subjects Cellulose
Impact resistance
Multiscale design
Protective gel
Smart device
title A robust, high-temperature-resistant, protective cellulose gel enabled by multiscale structural engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust,%20high-temperature-resistant,%20protective%20cellulose%20gel%20enabled%20by%20multiscale%20structural%20engineering&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Zhang,%20Shaoyu&rft.date=2024-10-01&rft.volume=277&rft.issue=Pt%204&rft.spage=134520&rft.pages=134520-&rft.artnum=134520&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.134520&rft_dat=%3Cproquest_cross%3E3099807761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-e82d163618d8d3a0e79a34b446a01923407607a5fd6a5fcca75efaec0411ec3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3099807761&rft_id=info:pmid/39217048&rfr_iscdi=true