Loading…
Dynamics of subsurface chlorophyll maxima in the northern Indian Ocean
Subsurface chlorophyll maxima (SCM) significantly contributes to oceanic primary productivity, emphasizing the need to study its dynamics and governing mechanisms. We used datasets from various platforms to investigate relationships between the SCM characteristics (SCM depth (ZSCM), SCM magnitude (C...
Saved in:
Published in: | Marine pollution bulletin 2024-10, Vol.207, p.116891, Article 116891 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Subsurface chlorophyll maxima (SCM) significantly contributes to oceanic primary productivity, emphasizing the need to study its dynamics and governing mechanisms. We used datasets from various platforms to investigate relationships between the SCM characteristics (SCM depth (ZSCM), SCM magnitude (Chlmax), SCM thickness (TSCM)) and environmental variables modulated by various physical processes in the Northern Indian Ocean (NIO). In the Arabian Sea (western NIO), seasonal processes like convective mixing and upwelling, primarily regulated the SCM characteristics. In the Bay of Bengal (eastern NIO), SCM characteristics were jointly influenced by fresh water influx, barrier layer formation, presence of eddies, and the propagation of Kelvin and Rossby waves. Any changes in these oceanic processes, potentially driven by climate change, could therefore impact oceanic primary production. Additionally, a positive association obtained between Chlmax and downward CO2 flux, while a shallower ZSCM, associated with higher concentrations of DMS, indicated SCM's role in regulating atmospheric gases.
[Display omitted]
•Study offers insights on primary production and gaseous exchange over NIO.•Basin scale dynamics play a pivotal role in modulating the SCM.•SST and mixed layer depth are prominent modulators of SCM over AS.•Thermocline depth is a major regulator of SCM in BOB.•SCM also contribute in CO2 and DMS flux over NIO. |
---|---|
ISSN: | 0025-326X 1879-3363 1879-3363 |
DOI: | 10.1016/j.marpolbul.2024.116891 |