Loading…

Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations

A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2024-09, Vol.20 (18), p.8088-8099
Main Authors: Boittier, Eric, Töpfer, Kai, Devereux, Mike, Meuwly, Markus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933
container_end_page 8099
container_issue 18
container_start_page 8088
container_title Journal of chemical theory and computation
container_volume 20
creator Boittier, Eric
Töpfer, Kai
Devereux, Mike
Meuwly, Markus
description A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flow. Using Gaussian kernels and atom–atom distances as the features, the ESPs for water and methanol are shown to improve by at least a factor of 2 compared with point charge models fit to an ensemble of structures. The conformationally fluctuating molecular dipole moment of water is reproduced almost twice as accurately using kMDCM compared with static PCs, despite not fitting to the dipole directly. The role of hyperparameters in the kernelization is investigated and their implication on model performance and simulation stability is discussed. Combining kMDCM for the electrostatics and reproducing kernels for the bonded terms allows energy-conserving simulations of 2000 water molecules with periodic boundary conditions on the nanosecond time scale. These MD simulations sample geometries outside the training set but remain stable, which demonstrates the robustness of the model and its implementation.
doi_str_mv 10.1021/acs.jctc.4c00759
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100564459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112169941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933</originalsourceid><addsrcrecordid>eNp1kbtPwzAQxi0Eorx2JmSJhYEUv5LGbKWUh2gFEt0jx7lAIicudjLw3-PQwoDEdKfT7_tOdx9Cp5SMKWH0Smk_rnWnx0ITMonlDjqgsZCRTFiy-9vTdIQOva8J4Vwwvo9GXDJOaJoeoPoJXAsmulEeCrys2qpRBt9WvnNV3ndhNntX7g38NZ7imW1L6xrVVbZVxnziW1hDW0Db4fnrS7S0BRgcCLy0BnRvlMOvVRPqIPDHaK9UxsPJth6h1d18NXuIFs_3j7PpIlIslV0kQKY654maKDYpS5LkWqcJE0ynlKky1QJUWSgWx4IWiS7CeXEuFIlZTrjk_AhdbGzXzn704LusqbwGY1QLtvcZp4TEiRCxDOj5H7S2vQunDRRlNJFS0ECRDaWd9d5Bma1d-JL7zCjJhhiyEEM2xJBtYwiSs61xnzdQ_Ap-_h6Ayw3wLf1Z-q_fF1dLk6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112169941</pqid></control><display><type>article</type><title>Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Boittier, Eric ; Töpfer, Kai ; Devereux, Mike ; Meuwly, Markus</creator><creatorcontrib>Boittier, Eric ; Töpfer, Kai ; Devereux, Mike ; Meuwly, Markus</creatorcontrib><description>A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flow. Using Gaussian kernels and atom–atom distances as the features, the ESPs for water and methanol are shown to improve by at least a factor of 2 compared with point charge models fit to an ensemble of structures. The conformationally fluctuating molecular dipole moment of water is reproduced almost twice as accurately using kMDCM compared with static PCs, despite not fitting to the dipole directly. The role of hyperparameters in the kernelization is investigated and their implication on model performance and simulation stability is discussed. Combining kMDCM for the electrostatics and reproducing kernels for the bonded terms allows energy-conserving simulations of 2000 water molecules with periodic boundary conditions on the nanosecond time scale. These MD simulations sample geometries outside the training set but remain stable, which demonstrates the robustness of the model and its implementation.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00759</identifier><identifier>PMID: 39230188</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Boundary conditions ; Chemical bonds ; Dipole moments ; Electrostatics ; Molecular Mechanics ; Point charge ; Simulation ; Water chemistry</subject><ispartof>Journal of chemical theory and computation, 2024-09, Vol.20 (18), p.8088-8099</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 24, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933</cites><orcidid>0000-0002-1561-1635 ; 0000-0002-4650-9641 ; 0000-0002-9611-1017 ; 0000-0001-7930-8806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39230188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boittier, Eric</creatorcontrib><creatorcontrib>Töpfer, Kai</creatorcontrib><creatorcontrib>Devereux, Mike</creatorcontrib><creatorcontrib>Meuwly, Markus</creatorcontrib><title>Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flow. Using Gaussian kernels and atom–atom distances as the features, the ESPs for water and methanol are shown to improve by at least a factor of 2 compared with point charge models fit to an ensemble of structures. The conformationally fluctuating molecular dipole moment of water is reproduced almost twice as accurately using kMDCM compared with static PCs, despite not fitting to the dipole directly. The role of hyperparameters in the kernelization is investigated and their implication on model performance and simulation stability is discussed. Combining kMDCM for the electrostatics and reproducing kernels for the bonded terms allows energy-conserving simulations of 2000 water molecules with periodic boundary conditions on the nanosecond time scale. These MD simulations sample geometries outside the training set but remain stable, which demonstrates the robustness of the model and its implementation.</description><subject>Boundary conditions</subject><subject>Chemical bonds</subject><subject>Dipole moments</subject><subject>Electrostatics</subject><subject>Molecular Mechanics</subject><subject>Point charge</subject><subject>Simulation</subject><subject>Water chemistry</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kbtPwzAQxi0Eorx2JmSJhYEUv5LGbKWUh2gFEt0jx7lAIicudjLw3-PQwoDEdKfT7_tOdx9Cp5SMKWH0Smk_rnWnx0ITMonlDjqgsZCRTFiy-9vTdIQOva8J4Vwwvo9GXDJOaJoeoPoJXAsmulEeCrys2qpRBt9WvnNV3ndhNntX7g38NZ7imW1L6xrVVbZVxnziW1hDW0Db4fnrS7S0BRgcCLy0BnRvlMOvVRPqIPDHaK9UxsPJth6h1d18NXuIFs_3j7PpIlIslV0kQKY654maKDYpS5LkWqcJE0ynlKky1QJUWSgWx4IWiS7CeXEuFIlZTrjk_AhdbGzXzn704LusqbwGY1QLtvcZp4TEiRCxDOj5H7S2vQunDRRlNJFS0ECRDaWd9d5Bma1d-JL7zCjJhhiyEEM2xJBtYwiSs61xnzdQ_Ap-_h6Ayw3wLf1Z-q_fF1dLk6Y</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Boittier, Eric</creator><creator>Töpfer, Kai</creator><creator>Devereux, Mike</creator><creator>Meuwly, Markus</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1561-1635</orcidid><orcidid>https://orcid.org/0000-0002-4650-9641</orcidid><orcidid>https://orcid.org/0000-0002-9611-1017</orcidid><orcidid>https://orcid.org/0000-0001-7930-8806</orcidid></search><sort><creationdate>20240904</creationdate><title>Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations</title><author>Boittier, Eric ; Töpfer, Kai ; Devereux, Mike ; Meuwly, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Chemical bonds</topic><topic>Dipole moments</topic><topic>Electrostatics</topic><topic>Molecular Mechanics</topic><topic>Point charge</topic><topic>Simulation</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boittier, Eric</creatorcontrib><creatorcontrib>Töpfer, Kai</creatorcontrib><creatorcontrib>Devereux, Mike</creatorcontrib><creatorcontrib>Meuwly, Markus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boittier, Eric</au><au>Töpfer, Kai</au><au>Devereux, Mike</au><au>Meuwly, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>20</volume><issue>18</issue><spage>8088</spage><epage>8099</epage><pages>8088-8099</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flow. Using Gaussian kernels and atom–atom distances as the features, the ESPs for water and methanol are shown to improve by at least a factor of 2 compared with point charge models fit to an ensemble of structures. The conformationally fluctuating molecular dipole moment of water is reproduced almost twice as accurately using kMDCM compared with static PCs, despite not fitting to the dipole directly. The role of hyperparameters in the kernelization is investigated and their implication on model performance and simulation stability is discussed. Combining kMDCM for the electrostatics and reproducing kernels for the bonded terms allows energy-conserving simulations of 2000 water molecules with periodic boundary conditions on the nanosecond time scale. These MD simulations sample geometries outside the training set but remain stable, which demonstrates the robustness of the model and its implementation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39230188</pmid><doi>10.1021/acs.jctc.4c00759</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1561-1635</orcidid><orcidid>https://orcid.org/0000-0002-4650-9641</orcidid><orcidid>https://orcid.org/0000-0002-9611-1017</orcidid><orcidid>https://orcid.org/0000-0001-7930-8806</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2024-09, Vol.20 (18), p.8088-8099
issn 1549-9618
1549-9626
1549-9626
language eng
recordid cdi_proquest_miscellaneous_3100564459
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Boundary conditions
Chemical bonds
Dipole moments
Electrostatics
Molecular Mechanics
Point charge
Simulation
Water chemistry
title Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel-Based%20Minimal%20Distributed%20Charges:%20A%20Conformationally%20Dependent%20ESP-Model%20for%20Molecular%20Simulations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Boittier,%20Eric&rft.date=2024-09-04&rft.volume=20&rft.issue=18&rft.spage=8088&rft.epage=8099&rft.pages=8088-8099&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00759&rft_dat=%3Cproquest_cross%3E3112169941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112169941&rft_id=info:pmid/39230188&rfr_iscdi=true