Loading…
Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations
A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flo...
Saved in:
Published in: | Journal of chemical theory and computation 2024-09, Vol.20 (18), p.8088-8099 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933 |
container_end_page | 8099 |
container_issue | 18 |
container_start_page | 8088 |
container_title | Journal of chemical theory and computation |
container_volume | 20 |
creator | Boittier, Eric Töpfer, Kai Devereux, Mike Meuwly, Markus |
description | A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flow. Using Gaussian kernels and atom–atom distances as the features, the ESPs for water and methanol are shown to improve by at least a factor of 2 compared with point charge models fit to an ensemble of structures. The conformationally fluctuating molecular dipole moment of water is reproduced almost twice as accurately using kMDCM compared with static PCs, despite not fitting to the dipole directly. The role of hyperparameters in the kernelization is investigated and their implication on model performance and simulation stability is discussed. Combining kMDCM for the electrostatics and reproducing kernels for the bonded terms allows energy-conserving simulations of 2000 water molecules with periodic boundary conditions on the nanosecond time scale. These MD simulations sample geometries outside the training set but remain stable, which demonstrates the robustness of the model and its implementation. |
doi_str_mv | 10.1021/acs.jctc.4c00759 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3100564459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112169941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933</originalsourceid><addsrcrecordid>eNp1kbtPwzAQxi0Eorx2JmSJhYEUv5LGbKWUh2gFEt0jx7lAIicudjLw3-PQwoDEdKfT7_tOdx9Cp5SMKWH0Smk_rnWnx0ITMonlDjqgsZCRTFiy-9vTdIQOva8J4Vwwvo9GXDJOaJoeoPoJXAsmulEeCrys2qpRBt9WvnNV3ndhNntX7g38NZ7imW1L6xrVVbZVxnziW1hDW0Db4fnrS7S0BRgcCLy0BnRvlMOvVRPqIPDHaK9UxsPJth6h1d18NXuIFs_3j7PpIlIslV0kQKY654maKDYpS5LkWqcJE0ynlKky1QJUWSgWx4IWiS7CeXEuFIlZTrjk_AhdbGzXzn704LusqbwGY1QLtvcZp4TEiRCxDOj5H7S2vQunDRRlNJFS0ECRDaWd9d5Bma1d-JL7zCjJhhiyEEM2xJBtYwiSs61xnzdQ_Ap-_h6Ayw3wLf1Z-q_fF1dLk6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112169941</pqid></control><display><type>article</type><title>Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Boittier, Eric ; Töpfer, Kai ; Devereux, Mike ; Meuwly, Markus</creator><creatorcontrib>Boittier, Eric ; Töpfer, Kai ; Devereux, Mike ; Meuwly, Markus</creatorcontrib><description>A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flow. Using Gaussian kernels and atom–atom distances as the features, the ESPs for water and methanol are shown to improve by at least a factor of 2 compared with point charge models fit to an ensemble of structures. The conformationally fluctuating molecular dipole moment of water is reproduced almost twice as accurately using kMDCM compared with static PCs, despite not fitting to the dipole directly. The role of hyperparameters in the kernelization is investigated and their implication on model performance and simulation stability is discussed. Combining kMDCM for the electrostatics and reproducing kernels for the bonded terms allows energy-conserving simulations of 2000 water molecules with periodic boundary conditions on the nanosecond time scale. These MD simulations sample geometries outside the training set but remain stable, which demonstrates the robustness of the model and its implementation.</description><identifier>ISSN: 1549-9618</identifier><identifier>ISSN: 1549-9626</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.4c00759</identifier><identifier>PMID: 39230188</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Boundary conditions ; Chemical bonds ; Dipole moments ; Electrostatics ; Molecular Mechanics ; Point charge ; Simulation ; Water chemistry</subject><ispartof>Journal of chemical theory and computation, 2024-09, Vol.20 (18), p.8088-8099</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 24, 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933</cites><orcidid>0000-0002-1561-1635 ; 0000-0002-4650-9641 ; 0000-0002-9611-1017 ; 0000-0001-7930-8806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39230188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boittier, Eric</creatorcontrib><creatorcontrib>Töpfer, Kai</creatorcontrib><creatorcontrib>Devereux, Mike</creatorcontrib><creatorcontrib>Meuwly, Markus</creatorcontrib><title>Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flow. Using Gaussian kernels and atom–atom distances as the features, the ESPs for water and methanol are shown to improve by at least a factor of 2 compared with point charge models fit to an ensemble of structures. The conformationally fluctuating molecular dipole moment of water is reproduced almost twice as accurately using kMDCM compared with static PCs, despite not fitting to the dipole directly. The role of hyperparameters in the kernelization is investigated and their implication on model performance and simulation stability is discussed. Combining kMDCM for the electrostatics and reproducing kernels for the bonded terms allows energy-conserving simulations of 2000 water molecules with periodic boundary conditions on the nanosecond time scale. These MD simulations sample geometries outside the training set but remain stable, which demonstrates the robustness of the model and its implementation.</description><subject>Boundary conditions</subject><subject>Chemical bonds</subject><subject>Dipole moments</subject><subject>Electrostatics</subject><subject>Molecular Mechanics</subject><subject>Point charge</subject><subject>Simulation</subject><subject>Water chemistry</subject><issn>1549-9618</issn><issn>1549-9626</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kbtPwzAQxi0Eorx2JmSJhYEUv5LGbKWUh2gFEt0jx7lAIicudjLw3-PQwoDEdKfT7_tOdx9Cp5SMKWH0Smk_rnWnx0ITMonlDjqgsZCRTFiy-9vTdIQOva8J4Vwwvo9GXDJOaJoeoPoJXAsmulEeCrys2qpRBt9WvnNV3ndhNntX7g38NZ7imW1L6xrVVbZVxnziW1hDW0Db4fnrS7S0BRgcCLy0BnRvlMOvVRPqIPDHaK9UxsPJth6h1d18NXuIFs_3j7PpIlIslV0kQKY654maKDYpS5LkWqcJE0ynlKky1QJUWSgWx4IWiS7CeXEuFIlZTrjk_AhdbGzXzn704LusqbwGY1QLtvcZp4TEiRCxDOj5H7S2vQunDRRlNJFS0ECRDaWd9d5Bma1d-JL7zCjJhhiyEEM2xJBtYwiSs61xnzdQ_Ap-_h6Ayw3wLf1Z-q_fF1dLk6Y</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Boittier, Eric</creator><creator>Töpfer, Kai</creator><creator>Devereux, Mike</creator><creator>Meuwly, Markus</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1561-1635</orcidid><orcidid>https://orcid.org/0000-0002-4650-9641</orcidid><orcidid>https://orcid.org/0000-0002-9611-1017</orcidid><orcidid>https://orcid.org/0000-0001-7930-8806</orcidid></search><sort><creationdate>20240904</creationdate><title>Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations</title><author>Boittier, Eric ; Töpfer, Kai ; Devereux, Mike ; Meuwly, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Chemical bonds</topic><topic>Dipole moments</topic><topic>Electrostatics</topic><topic>Molecular Mechanics</topic><topic>Point charge</topic><topic>Simulation</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boittier, Eric</creatorcontrib><creatorcontrib>Töpfer, Kai</creatorcontrib><creatorcontrib>Devereux, Mike</creatorcontrib><creatorcontrib>Meuwly, Markus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boittier, Eric</au><au>Töpfer, Kai</au><au>Devereux, Mike</au><au>Meuwly, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>20</volume><issue>18</issue><spage>8088</spage><epage>8099</epage><pages>8088-8099</pages><issn>1549-9618</issn><issn>1549-9626</issn><eissn>1549-9626</eissn><abstract>A kernel-based method (kernelized minimal distributed charge model (kMDCM)) to represent the molecular electrostatic potential (ESP) in terms of off-center point charges is introduced. The positions of the charges adapt to the molecular geometry and allow the description of intramolecular charge flow. Using Gaussian kernels and atom–atom distances as the features, the ESPs for water and methanol are shown to improve by at least a factor of 2 compared with point charge models fit to an ensemble of structures. The conformationally fluctuating molecular dipole moment of water is reproduced almost twice as accurately using kMDCM compared with static PCs, despite not fitting to the dipole directly. The role of hyperparameters in the kernelization is investigated and their implication on model performance and simulation stability is discussed. Combining kMDCM for the electrostatics and reproducing kernels for the bonded terms allows energy-conserving simulations of 2000 water molecules with periodic boundary conditions on the nanosecond time scale. These MD simulations sample geometries outside the training set but remain stable, which demonstrates the robustness of the model and its implementation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39230188</pmid><doi>10.1021/acs.jctc.4c00759</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1561-1635</orcidid><orcidid>https://orcid.org/0000-0002-4650-9641</orcidid><orcidid>https://orcid.org/0000-0002-9611-1017</orcidid><orcidid>https://orcid.org/0000-0001-7930-8806</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2024-09, Vol.20 (18), p.8088-8099 |
issn | 1549-9618 1549-9626 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_3100564459 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Boundary conditions Chemical bonds Dipole moments Electrostatics Molecular Mechanics Point charge Simulation Water chemistry |
title | Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel-Based%20Minimal%20Distributed%20Charges:%20A%20Conformationally%20Dependent%20ESP-Model%20for%20Molecular%20Simulations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Boittier,%20Eric&rft.date=2024-09-04&rft.volume=20&rft.issue=18&rft.spage=8088&rft.epage=8099&rft.pages=8088-8099&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.4c00759&rft_dat=%3Cproquest_cross%3E3112169941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-4e98cb36a7a27ff06bcc86242c812af8c4eafda25541d6cd6185b4a052b03933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112169941&rft_id=info:pmid/39230188&rfr_iscdi=true |