Loading…

TRAF3IP3 Blocks Mitophagy to Exacerbate Myocardial Injury Induced by Ischemia–Reperfusion

To uncover the possible role of TRAF3IP3 in the progression of myocardial infarction (MI), clarify its role in mitophagy and mitochondrial function, and explore the underlying mechanism. GEO chip analysis, RT-qPCR, and LDH release assay were used to detect the expression of TRAF3IP3 in tissues and c...

Full description

Saved in:
Bibliographic Details
Published in:Cardiovascular toxicology 2024-11, Vol.24 (11), p.1204-1214
Main Authors: Wei, Zhongcheng, Liu, Juan, Liu, Hailang, Jiang, Aixia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To uncover the possible role of TRAF3IP3 in the progression of myocardial infarction (MI), clarify its role in mitophagy and mitochondrial function, and explore the underlying mechanism. GEO chip analysis, RT-qPCR, and LDH release assay were used to detect the expression of TRAF3IP3 in tissues and cells and its effects on cell damage. Immunostaining and ATP product assays were performed to examine the effects of TRAF3IP3 on mitochondrial function. Co-IP, CHX assays, Immunoblot and Immunostaining assays were conducted to determine the effects of TRAF3IP3 on mitophagy. TRAF3IP3 was highly expressed in IR rats and HR-induced H9C2 cells. TRAF3IP3 knockdown can alleviate H/R-induced H9C2 cell damage. In addition, TRAF3IP3 knockdown can induce mitophagy, thus enhancing mitochondrial function. We further revealed that TRAF3IP3 can promote the degradation of NEDD4 protein. Moreover, TRAF3IP3 knockdown suppressed myocardial injury in I/R rats. TRAF3IP3 blocks mitophagy to exacerbate myocardial injury induced by I/R via mediating NEDD4 expression.
ISSN:1530-7905
1559-0259
1559-0259
DOI:10.1007/s12012-024-09916-8