Loading…

Generation and characterization of cortical organoids from iPSC-derived dental pulp stem cells using traditional and innovative approaches

Cortical organoids derived from human induced pluripotent stem cells (hiPSCs) represent a powerful in vitro experimental system to investigate human brain development and disease, often inaccessible to direct experimentation. However, despite steady progress in organoid technology, several limitatio...

Full description

Saved in:
Bibliographic Details
Published in:Neurochemistry international 2024-11, Vol.180, p.105854, Article 105854
Main Authors: Teles e Silva, André Luíz, Yokota-Moreno, Bruno Yukio, Branquinho, Mariana Silva, Salles, Geisa Rodrigues, de Souza, Thiago Cattuzo, de Carvalho, Ronald Almeida, Batista, Gabriel, Varella Branco, Elisa, Griesi-Oliveira, Karina, Passos Bueno, Maria Rita, Porcionatto, Marimélia Aparecida, Herai, Roberto Hirochi, Gamarra, Lionel Fernel, Sertié, Andrea Laurato
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cortical organoids derived from human induced pluripotent stem cells (hiPSCs) represent a powerful in vitro experimental system to investigate human brain development and disease, often inaccessible to direct experimentation. However, despite steady progress in organoid technology, several limitations remain, including high cost and variability, use of hiPSCs derived from tissues harvested invasively, unexplored three-dimensional (3D) structural features and neuronal connectivity. Here, using a cost-effective and reproducible protocol as well as conventional two-dimensional (2D) immunostaining, we show that cortical organoids generated from hiPSCs obtained by reprogramming stem cells from human exfoliated deciduous teeth (SHED) recapitulate key aspects of human corticogenesis, such as polarized organization of neural progenitor zones with the presence of outer radial glial stem cells, and differentiation of superficial- and deep-layer cortical neurons and glial cells. We also show that 3D bioprinting and magnetic resonance imaging of intact cortical organoids are alternative and complementary approaches to unravel critical features of the 3D architecture of organoids. Finally, extracellular electrical recordings in whole organoids showed functional neuronal networks. Together, our findings suggest that SHED-derived cortical organoids constitute an attractive model of human neurodevelopment, and support the notion that a combination of 2D and 3D techniques to analyze organoid structure and function may help improve this promising technology. •Brain organoids from dental pulp stem cells mimic early human corticogenesis.•Brain organoids from dental pulp stem cells form organized neural networks.•3D bioprinted cortical organoids display multiple neural progenitor zones.•MRI provides information on organoid volume and 3D cellular density.
ISSN:0197-0186
1872-9754
1872-9754
DOI:10.1016/j.neuint.2024.105854