Loading…

NMR Spectroscopy and Multiscale Modeling Shed Light on Ion–Solvent Interactions and Ion Pairing in Aqueous NaF Solutions

The balance between ion solvation and ion pairing in aqueous solutions modulates chemical and physical processes from catalysis to protein folding. Yet, despite more than a century of investigation, experimental determination of the distribution of ion-solvation and ion-pairing states remains elusiv...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2024-09, Vol.128 (37), p.8974-8983
Main Authors: Musiał, Małgorzata, Riccardi, Demian, Suiter, Christopher L., Sontarp, Ethan J., Miller, Samantha L., Lirette, Robert L., Rehmeier, Kyle Covington, Mahata, Avik, Muzny, Chris D., Stelson, Angela C., Schwarz, Kathleen A., Widegren, Jason A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a219t-de9bcdc72e8800f1b969d17877a3b55292f8b881b9575bbaa21a2a080e4086713
container_end_page 8983
container_issue 37
container_start_page 8974
container_title The journal of physical chemistry. B
container_volume 128
creator Musiał, Małgorzata
Riccardi, Demian
Suiter, Christopher L.
Sontarp, Ethan J.
Miller, Samantha L.
Lirette, Robert L.
Rehmeier, Kyle Covington
Mahata, Avik
Muzny, Chris D.
Stelson, Angela C.
Schwarz, Kathleen A.
Widegren, Jason A.
description The balance between ion solvation and ion pairing in aqueous solutions modulates chemical and physical processes from catalysis to protein folding. Yet, despite more than a century of investigation, experimental determination of the distribution of ion-solvation and ion-pairing states remains elusive, even for archetypal systems like aqueous alkali halides. Here, we combine nuclear magnetic resonance (NMR) spectroscopy and multiscale modeling to disentangle ion–solvent interactions from ion pairing in aqueous sodium fluoride solutions. We have developed a high-accuracy method to collect experimental NMR resonance frequencies for both ions as functions of temperature and concentration. Comparison of these data with resonance frequencies for nonassociating salts allows us to differentiate the influence of solvation and ion pairing on NMR spectra. These high-quality experimental NMR data are used to validate our modeling framework comprising polarizable force field molecular dynamics (MD) simulations and quantum chemical calculations of NMR resonance frequencies. Our experimental and theoretical resonance frequency shifts agree over a wide range of temperatures and concentrations. Structural analysis reveals how both trends are dominated by interactions with water molecules. For the more sensitive 19F nucleus, the NMR resonance frequency decreases as hydrogen bonds between fluoride and water molecules are reduced in number with increased temperature and molality. Through a detailed analysis of the theoretical NMR resonance frequencies for both ions, we show that NMR spectroscopy can distinguish both contact ion pairs and single-solvent-separated ion pairs from free ions. This quantitative framework can be applied directly to other systems.
doi_str_mv 10.1021/acs.jpcb.4c03521
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3102471294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102471294</sourcerecordid><originalsourceid>FETCH-LOGICAL-a219t-de9bcdc72e8800f1b969d17877a3b55292f8b881b9575bbaa21a2a080e4086713</originalsourceid><addsrcrecordid>eNp1kE9PwyAchonRuDm9ezIcPdgJ9A_0uCxOl2zTOD03lNKtSwe1UJN58jv4Df0k0q1680Ag8D5vfjwAXGI0xIjgWy7McFOJdBgI5IcEH4E-Dgny3KLH3TnCKOqBM2M2CJGQsOgU9PyYhD6Noj74WMyf4bKSwtbaCF3tIFcZnDelLYzgpYRzncmyUCu4XMsMzorV2kKt4FSr78-vpS7fpbJwqqysubCFVmZf4J7hEy_qFiwUHL01UjcGLvgEOqbZB8_BSc5LIy-6fQBeJ3cv4wdv9ng_HY9mHic4tl4m41RkghLJGEI5TuMozjBllHI_DUMSk5yljLn7kIZpyh3FCUcMyQCxiGJ_AK4PvVWt3RzGJlv3N1mWXLVDJb5TGVBM4sBF0SEqnA1Tyzyp6mLL612CUdIaT5zxpDWedMYdctW1N-lWZn_Ar2IXuDkE9qhuauU--3_fD_O_jew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102471294</pqid></control><display><type>article</type><title>NMR Spectroscopy and Multiscale Modeling Shed Light on Ion–Solvent Interactions and Ion Pairing in Aqueous NaF Solutions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Musiał, Małgorzata ; Riccardi, Demian ; Suiter, Christopher L. ; Sontarp, Ethan J. ; Miller, Samantha L. ; Lirette, Robert L. ; Rehmeier, Kyle Covington ; Mahata, Avik ; Muzny, Chris D. ; Stelson, Angela C. ; Schwarz, Kathleen A. ; Widegren, Jason A.</creator><creatorcontrib>Musiał, Małgorzata ; Riccardi, Demian ; Suiter, Christopher L. ; Sontarp, Ethan J. ; Miller, Samantha L. ; Lirette, Robert L. ; Rehmeier, Kyle Covington ; Mahata, Avik ; Muzny, Chris D. ; Stelson, Angela C. ; Schwarz, Kathleen A. ; Widegren, Jason A.</creatorcontrib><description>The balance between ion solvation and ion pairing in aqueous solutions modulates chemical and physical processes from catalysis to protein folding. Yet, despite more than a century of investigation, experimental determination of the distribution of ion-solvation and ion-pairing states remains elusive, even for archetypal systems like aqueous alkali halides. Here, we combine nuclear magnetic resonance (NMR) spectroscopy and multiscale modeling to disentangle ion–solvent interactions from ion pairing in aqueous sodium fluoride solutions. We have developed a high-accuracy method to collect experimental NMR resonance frequencies for both ions as functions of temperature and concentration. Comparison of these data with resonance frequencies for nonassociating salts allows us to differentiate the influence of solvation and ion pairing on NMR spectra. These high-quality experimental NMR data are used to validate our modeling framework comprising polarizable force field molecular dynamics (MD) simulations and quantum chemical calculations of NMR resonance frequencies. Our experimental and theoretical resonance frequency shifts agree over a wide range of temperatures and concentrations. Structural analysis reveals how both trends are dominated by interactions with water molecules. For the more sensitive 19F nucleus, the NMR resonance frequency decreases as hydrogen bonds between fluoride and water molecules are reduced in number with increased temperature and molality. Through a detailed analysis of the theoretical NMR resonance frequencies for both ions, we show that NMR spectroscopy can distinguish both contact ion pairs and single-solvent-separated ion pairs from free ions. This quantitative framework can be applied directly to other systems.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.4c03521</identifier><identifier>PMID: 39253766</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Liquids; Chemical and Dynamical Processes in Solution</subject><ispartof>The journal of physical chemistry. B, 2024-09, Vol.128 (37), p.8974-8983</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a219t-de9bcdc72e8800f1b969d17877a3b55292f8b881b9575bbaa21a2a080e4086713</cites><orcidid>0000-0001-7945-7887 ; 0000-0003-1787-1059 ; 0000-0002-8900-140X ; 0000-0001-8095-7803 ; 0000-0002-1539-4511 ; 0000-0003-1077-7035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39253766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Musiał, Małgorzata</creatorcontrib><creatorcontrib>Riccardi, Demian</creatorcontrib><creatorcontrib>Suiter, Christopher L.</creatorcontrib><creatorcontrib>Sontarp, Ethan J.</creatorcontrib><creatorcontrib>Miller, Samantha L.</creatorcontrib><creatorcontrib>Lirette, Robert L.</creatorcontrib><creatorcontrib>Rehmeier, Kyle Covington</creatorcontrib><creatorcontrib>Mahata, Avik</creatorcontrib><creatorcontrib>Muzny, Chris D.</creatorcontrib><creatorcontrib>Stelson, Angela C.</creatorcontrib><creatorcontrib>Schwarz, Kathleen A.</creatorcontrib><creatorcontrib>Widegren, Jason A.</creatorcontrib><title>NMR Spectroscopy and Multiscale Modeling Shed Light on Ion–Solvent Interactions and Ion Pairing in Aqueous NaF Solutions</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The balance between ion solvation and ion pairing in aqueous solutions modulates chemical and physical processes from catalysis to protein folding. Yet, despite more than a century of investigation, experimental determination of the distribution of ion-solvation and ion-pairing states remains elusive, even for archetypal systems like aqueous alkali halides. Here, we combine nuclear magnetic resonance (NMR) spectroscopy and multiscale modeling to disentangle ion–solvent interactions from ion pairing in aqueous sodium fluoride solutions. We have developed a high-accuracy method to collect experimental NMR resonance frequencies for both ions as functions of temperature and concentration. Comparison of these data with resonance frequencies for nonassociating salts allows us to differentiate the influence of solvation and ion pairing on NMR spectra. These high-quality experimental NMR data are used to validate our modeling framework comprising polarizable force field molecular dynamics (MD) simulations and quantum chemical calculations of NMR resonance frequencies. Our experimental and theoretical resonance frequency shifts agree over a wide range of temperatures and concentrations. Structural analysis reveals how both trends are dominated by interactions with water molecules. For the more sensitive 19F nucleus, the NMR resonance frequency decreases as hydrogen bonds between fluoride and water molecules are reduced in number with increased temperature and molality. Through a detailed analysis of the theoretical NMR resonance frequencies for both ions, we show that NMR spectroscopy can distinguish both contact ion pairs and single-solvent-separated ion pairs from free ions. This quantitative framework can be applied directly to other systems.</description><subject>B: Liquids; Chemical and Dynamical Processes in Solution</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwyAchonRuDm9ezIcPdgJ9A_0uCxOl2zTOD03lNKtSwe1UJN58jv4Df0k0q1680Ag8D5vfjwAXGI0xIjgWy7McFOJdBgI5IcEH4E-Dgny3KLH3TnCKOqBM2M2CJGQsOgU9PyYhD6Noj74WMyf4bKSwtbaCF3tIFcZnDelLYzgpYRzncmyUCu4XMsMzorV2kKt4FSr78-vpS7fpbJwqqysubCFVmZf4J7hEy_qFiwUHL01UjcGLvgEOqbZB8_BSc5LIy-6fQBeJ3cv4wdv9ng_HY9mHic4tl4m41RkghLJGEI5TuMozjBllHI_DUMSk5yljLn7kIZpyh3FCUcMyQCxiGJ_AK4PvVWt3RzGJlv3N1mWXLVDJb5TGVBM4sBF0SEqnA1Tyzyp6mLL612CUdIaT5zxpDWedMYdctW1N-lWZn_Ar2IXuDkE9qhuauU--3_fD_O_jew</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Musiał, Małgorzata</creator><creator>Riccardi, Demian</creator><creator>Suiter, Christopher L.</creator><creator>Sontarp, Ethan J.</creator><creator>Miller, Samantha L.</creator><creator>Lirette, Robert L.</creator><creator>Rehmeier, Kyle Covington</creator><creator>Mahata, Avik</creator><creator>Muzny, Chris D.</creator><creator>Stelson, Angela C.</creator><creator>Schwarz, Kathleen A.</creator><creator>Widegren, Jason A.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7945-7887</orcidid><orcidid>https://orcid.org/0000-0003-1787-1059</orcidid><orcidid>https://orcid.org/0000-0002-8900-140X</orcidid><orcidid>https://orcid.org/0000-0001-8095-7803</orcidid><orcidid>https://orcid.org/0000-0002-1539-4511</orcidid><orcidid>https://orcid.org/0000-0003-1077-7035</orcidid></search><sort><creationdate>20240919</creationdate><title>NMR Spectroscopy and Multiscale Modeling Shed Light on Ion–Solvent Interactions and Ion Pairing in Aqueous NaF Solutions</title><author>Musiał, Małgorzata ; Riccardi, Demian ; Suiter, Christopher L. ; Sontarp, Ethan J. ; Miller, Samantha L. ; Lirette, Robert L. ; Rehmeier, Kyle Covington ; Mahata, Avik ; Muzny, Chris D. ; Stelson, Angela C. ; Schwarz, Kathleen A. ; Widegren, Jason A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a219t-de9bcdc72e8800f1b969d17877a3b55292f8b881b9575bbaa21a2a080e4086713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>B: Liquids; Chemical and Dynamical Processes in Solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musiał, Małgorzata</creatorcontrib><creatorcontrib>Riccardi, Demian</creatorcontrib><creatorcontrib>Suiter, Christopher L.</creatorcontrib><creatorcontrib>Sontarp, Ethan J.</creatorcontrib><creatorcontrib>Miller, Samantha L.</creatorcontrib><creatorcontrib>Lirette, Robert L.</creatorcontrib><creatorcontrib>Rehmeier, Kyle Covington</creatorcontrib><creatorcontrib>Mahata, Avik</creatorcontrib><creatorcontrib>Muzny, Chris D.</creatorcontrib><creatorcontrib>Stelson, Angela C.</creatorcontrib><creatorcontrib>Schwarz, Kathleen A.</creatorcontrib><creatorcontrib>Widegren, Jason A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musiał, Małgorzata</au><au>Riccardi, Demian</au><au>Suiter, Christopher L.</au><au>Sontarp, Ethan J.</au><au>Miller, Samantha L.</au><au>Lirette, Robert L.</au><au>Rehmeier, Kyle Covington</au><au>Mahata, Avik</au><au>Muzny, Chris D.</au><au>Stelson, Angela C.</au><au>Schwarz, Kathleen A.</au><au>Widegren, Jason A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMR Spectroscopy and Multiscale Modeling Shed Light on Ion–Solvent Interactions and Ion Pairing in Aqueous NaF Solutions</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-09-19</date><risdate>2024</risdate><volume>128</volume><issue>37</issue><spage>8974</spage><epage>8983</epage><pages>8974-8983</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>The balance between ion solvation and ion pairing in aqueous solutions modulates chemical and physical processes from catalysis to protein folding. Yet, despite more than a century of investigation, experimental determination of the distribution of ion-solvation and ion-pairing states remains elusive, even for archetypal systems like aqueous alkali halides. Here, we combine nuclear magnetic resonance (NMR) spectroscopy and multiscale modeling to disentangle ion–solvent interactions from ion pairing in aqueous sodium fluoride solutions. We have developed a high-accuracy method to collect experimental NMR resonance frequencies for both ions as functions of temperature and concentration. Comparison of these data with resonance frequencies for nonassociating salts allows us to differentiate the influence of solvation and ion pairing on NMR spectra. These high-quality experimental NMR data are used to validate our modeling framework comprising polarizable force field molecular dynamics (MD) simulations and quantum chemical calculations of NMR resonance frequencies. Our experimental and theoretical resonance frequency shifts agree over a wide range of temperatures and concentrations. Structural analysis reveals how both trends are dominated by interactions with water molecules. For the more sensitive 19F nucleus, the NMR resonance frequency decreases as hydrogen bonds between fluoride and water molecules are reduced in number with increased temperature and molality. Through a detailed analysis of the theoretical NMR resonance frequencies for both ions, we show that NMR spectroscopy can distinguish both contact ion pairs and single-solvent-separated ion pairs from free ions. This quantitative framework can be applied directly to other systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39253766</pmid><doi>10.1021/acs.jpcb.4c03521</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7945-7887</orcidid><orcidid>https://orcid.org/0000-0003-1787-1059</orcidid><orcidid>https://orcid.org/0000-0002-8900-140X</orcidid><orcidid>https://orcid.org/0000-0001-8095-7803</orcidid><orcidid>https://orcid.org/0000-0002-1539-4511</orcidid><orcidid>https://orcid.org/0000-0003-1077-7035</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2024-09, Vol.128 (37), p.8974-8983
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_proquest_miscellaneous_3102471294
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects B: Liquids
Chemical and Dynamical Processes in Solution
title NMR Spectroscopy and Multiscale Modeling Shed Light on Ion–Solvent Interactions and Ion Pairing in Aqueous NaF Solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMR%20Spectroscopy%20and%20Multiscale%20Modeling%20Shed%20Light%20on%20Ion%E2%80%93Solvent%20Interactions%20and%20Ion%20Pairing%20in%20Aqueous%20NaF%20Solutions&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Musia%C5%82,%20Ma%C5%82gorzata&rft.date=2024-09-19&rft.volume=128&rft.issue=37&rft.spage=8974&rft.epage=8983&rft.pages=8974-8983&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.4c03521&rft_dat=%3Cproquest_cross%3E3102471294%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a219t-de9bcdc72e8800f1b969d17877a3b55292f8b881b9575bbaa21a2a080e4086713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3102471294&rft_id=info:pmid/39253766&rfr_iscdi=true