Loading…

Reliability-based design optimization with equality constraints

Equality constraints have been well studied and widely used in deterministic optimization, but they have rarely been addressed in reliability‐based design optimization (RBDO). The inclusion of an equality constraint in RBDO results in dependency among random variables. Theoretically, one random vari...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2007-12, Vol.72 (11), p.1314-1331
Main Authors: Du, Xiaoping, Huang, Beiqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3983-72fca5c703fa540873c0136a8b3ffb870c4d73cae92f848636b511f2269a9f4d3
cites cdi_FETCH-LOGICAL-c3983-72fca5c703fa540873c0136a8b3ffb870c4d73cae92f848636b511f2269a9f4d3
container_end_page 1331
container_issue 11
container_start_page 1314
container_title International journal for numerical methods in engineering
container_volume 72
creator Du, Xiaoping
Huang, Beiqing
description Equality constraints have been well studied and widely used in deterministic optimization, but they have rarely been addressed in reliability‐based design optimization (RBDO). The inclusion of an equality constraint in RBDO results in dependency among random variables. Theoretically, one random variable can be substituted in terms of remaining random variables given an equality constraint; and the equality constraint can then be eliminated. However, in practice, eliminating an equality constraint may be difficult or impossible because of complexities such as coupling, recursion, high dimensionality, non‐linearity, implicit formats, and high computational costs. The objective of this work is to develop a methodology to model equality constraints and a numerical procedure to solve a RBDO problem with equality constraints. Equality constraints are classified into demand‐based type and physics‐based type. A sequential optimization and reliability analysis strategy is used to solve RBDO with physics‐based equality constraints. The first‐order reliability method is employed for reliability analysis. The proposed method is illustrated by a mathematical example and a two‐member frame design problem. Copyright © 2007 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.2043
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31028032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31028032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3983-72fca5c703fa540873c0136a8b3ffb870c4d73cae92f848636b511f2269a9f4d3</originalsourceid><addsrcrecordid>eNp10E9LwzAYx_EgCs4p-BJ6Ubx0Pkn6JzmJjFmFOUF0O4anaaLRrt2ajjlfvR0bevIUePLhe_gRck5hQAHYdTU3AwYRPyA9CjINgUF6SHrdlwxjKegxOfH-A4DSGHiP3Dyb0mHuStduwhy9KYLCePdWBfWidXP3ja2rq2Dt2vfALFe4dYGuK9826KrWn5Iji6U3Z_u3T17vRi_D-3D8lD0Mb8eh5lLwMGVWY6xT4BbjCETKNVCeoMi5tblIQUdFd0MjmRWRSHiSx5RaxhKJ0kYF75PLXXfR1MuV8a2aO69NWWJl6pVXnAITwFkHr3ZQN7X3jbFq0bg5NhtFQW0XUt1CartQRy_2TfQaS9tgpZ3_81JCIkF2Lty5tSvN5t-emjyO9t29d741X78em0-VpDyN1WySqWw6ywQdTlXCfwBsL4Nb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31028032</pqid></control><display><type>article</type><title>Reliability-based design optimization with equality constraints</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Du, Xiaoping ; Huang, Beiqing</creator><creatorcontrib>Du, Xiaoping ; Huang, Beiqing</creatorcontrib><description>Equality constraints have been well studied and widely used in deterministic optimization, but they have rarely been addressed in reliability‐based design optimization (RBDO). The inclusion of an equality constraint in RBDO results in dependency among random variables. Theoretically, one random variable can be substituted in terms of remaining random variables given an equality constraint; and the equality constraint can then be eliminated. However, in practice, eliminating an equality constraint may be difficult or impossible because of complexities such as coupling, recursion, high dimensionality, non‐linearity, implicit formats, and high computational costs. The objective of this work is to develop a methodology to model equality constraints and a numerical procedure to solve a RBDO problem with equality constraints. Equality constraints are classified into demand‐based type and physics‐based type. A sequential optimization and reliability analysis strategy is used to solve RBDO with physics‐based equality constraints. The first‐order reliability method is employed for reliability analysis. The proposed method is illustrated by a mathematical example and a two‐member frame design problem. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2043</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Computational techniques ; equality constraints ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; optimization ; Physics ; probabilistic constraints ; reliability ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 2007-12, Vol.72 (11), p.1314-1331</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3983-72fca5c703fa540873c0136a8b3ffb870c4d73cae92f848636b511f2269a9f4d3</citedby><cites>FETCH-LOGICAL-c3983-72fca5c703fa540873c0136a8b3ffb870c4d73cae92f848636b511f2269a9f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19906909$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Xiaoping</creatorcontrib><creatorcontrib>Huang, Beiqing</creatorcontrib><title>Reliability-based design optimization with equality constraints</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Equality constraints have been well studied and widely used in deterministic optimization, but they have rarely been addressed in reliability‐based design optimization (RBDO). The inclusion of an equality constraint in RBDO results in dependency among random variables. Theoretically, one random variable can be substituted in terms of remaining random variables given an equality constraint; and the equality constraint can then be eliminated. However, in practice, eliminating an equality constraint may be difficult or impossible because of complexities such as coupling, recursion, high dimensionality, non‐linearity, implicit formats, and high computational costs. The objective of this work is to develop a methodology to model equality constraints and a numerical procedure to solve a RBDO problem with equality constraints. Equality constraints are classified into demand‐based type and physics‐based type. A sequential optimization and reliability analysis strategy is used to solve RBDO with physics‐based equality constraints. The first‐order reliability method is employed for reliability analysis. The proposed method is illustrated by a mathematical example and a two‐member frame design problem. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>Computational techniques</subject><subject>equality constraints</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>optimization</subject><subject>Physics</subject><subject>probabilistic constraints</subject><subject>reliability</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp10E9LwzAYx_EgCs4p-BJ6Ubx0Pkn6JzmJjFmFOUF0O4anaaLRrt2ajjlfvR0bevIUePLhe_gRck5hQAHYdTU3AwYRPyA9CjINgUF6SHrdlwxjKegxOfH-A4DSGHiP3Dyb0mHuStduwhy9KYLCePdWBfWidXP3ja2rq2Dt2vfALFe4dYGuK9826KrWn5Iji6U3Z_u3T17vRi_D-3D8lD0Mb8eh5lLwMGVWY6xT4BbjCETKNVCeoMi5tblIQUdFd0MjmRWRSHiSx5RaxhKJ0kYF75PLXXfR1MuV8a2aO69NWWJl6pVXnAITwFkHr3ZQN7X3jbFq0bg5NhtFQW0XUt1CartQRy_2TfQaS9tgpZ3_81JCIkF2Lty5tSvN5t-emjyO9t29d741X78em0-VpDyN1WySqWw6ywQdTlXCfwBsL4Nb</recordid><startdate>20071210</startdate><enddate>20071210</enddate><creator>Du, Xiaoping</creator><creator>Huang, Beiqing</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20071210</creationdate><title>Reliability-based design optimization with equality constraints</title><author>Du, Xiaoping ; Huang, Beiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3983-72fca5c703fa540873c0136a8b3ffb870c4d73cae92f848636b511f2269a9f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational techniques</topic><topic>equality constraints</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>optimization</topic><topic>Physics</topic><topic>probabilistic constraints</topic><topic>reliability</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xiaoping</creatorcontrib><creatorcontrib>Huang, Beiqing</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xiaoping</au><au>Huang, Beiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability-based design optimization with equality constraints</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2007-12-10</date><risdate>2007</risdate><volume>72</volume><issue>11</issue><spage>1314</spage><epage>1331</epage><pages>1314-1331</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Equality constraints have been well studied and widely used in deterministic optimization, but they have rarely been addressed in reliability‐based design optimization (RBDO). The inclusion of an equality constraint in RBDO results in dependency among random variables. Theoretically, one random variable can be substituted in terms of remaining random variables given an equality constraint; and the equality constraint can then be eliminated. However, in practice, eliminating an equality constraint may be difficult or impossible because of complexities such as coupling, recursion, high dimensionality, non‐linearity, implicit formats, and high computational costs. The objective of this work is to develop a methodology to model equality constraints and a numerical procedure to solve a RBDO problem with equality constraints. Equality constraints are classified into demand‐based type and physics‐based type. A sequential optimization and reliability analysis strategy is used to solve RBDO with physics‐based equality constraints. The first‐order reliability method is employed for reliability analysis. The proposed method is illustrated by a mathematical example and a two‐member frame design problem. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.2043</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2007-12, Vol.72 (11), p.1314-1331
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_31028032
source Wiley-Blackwell Read & Publish Collection
subjects Computational techniques
equality constraints
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
optimization
Physics
probabilistic constraints
reliability
Solid mechanics
Structural and continuum mechanics
title Reliability-based design optimization with equality constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability-based%20design%20optimization%20with%20equality%20constraints&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Du,%20Xiaoping&rft.date=2007-12-10&rft.volume=72&rft.issue=11&rft.spage=1314&rft.epage=1331&rft.pages=1314-1331&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2043&rft_dat=%3Cproquest_cross%3E31028032%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3983-72fca5c703fa540873c0136a8b3ffb870c4d73cae92f848636b511f2269a9f4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31028032&rft_id=info:pmid/&rfr_iscdi=true