Loading…

Poly-tannic acid coated PLGA nanoparticle decorated with antimicrobial peptide for synergistic bacteria treatment and infectious wound healing promotion

Bacterial infections pose a great threat to human health. Therefore, the development of new antibacterial agents or methods is in urgent need. In this study, we prepared polytannic acid (pTA)-coated PLGA nanoparticles decorated with Dermaseptin-PP (Der), an antimicrobial peptide (AMP), on the surfac...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2025-01, Vol.245, p.114217, Article 114217
Main Authors: Guo, Mingxue, Ruan, Mingyue, Wu, Jiamin, Ye, Jinhong, Wang, Changhai, Guo, Zishuo, Chen, Wanling, Wang, Liu, Wu, Kai, Du, Shouying, Han, Ning, Lu, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacterial infections pose a great threat to human health. Therefore, the development of new antibacterial agents or methods is in urgent need. In this study, we prepared polytannic acid (pTA)-coated PLGA nanoparticles decorated with Dermaseptin-PP (Der), an antimicrobial peptide (AMP), on the surface to obtain PLGA-pTA-Der. This nanoplatform could combine AMPs with photothermal treatment (PTT) mediated by pTA to achieve synergistic bacterial killing. The results of in vitro experiments showed that the PLGA-pTA-Der nanoparticles could eliminate nearly 99 % of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) upon near-infrared (NIR) laser irradiation (2.0 W·cm−2, 5 min), demonstrating excellent antibacterial properties. In addition, the results of atomic force microscopy (AFM) revealed that PLGA-pTA-Der with laser irradiation can greatly destroy the mechanical integrity of the bacterial outer membrane. And the presence of Der could exacerbate the heat damage caused by the PLGA-pTA NPs to the bacteria, which is helpful to reduce the critical temperature required for bacteria killing by PTT. In vivo experiments showed that PLGA-pTA-Der nanoparticles with laser irradiation significantly accelerated the wound healing process and inhibited the growth of bacterial. Moreover, it can achieve a strong photothermal antibacterial effect at a mild temperature (
ISSN:0927-7765
1873-4367
1873-4367
DOI:10.1016/j.colsurfb.2024.114217