Loading…
Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications
This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of t...
Saved in:
Published in: | ACS sensors 2024-10, Vol.9 (10), p.5188-5196 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113 |
container_end_page | 5196 |
container_issue | 10 |
container_start_page | 5188 |
container_title | ACS sensors |
container_volume | 9 |
creator | Zang, Chuanlai Ramaraj, Sankar Ganesh Yano, Yasuo Yamahara, Hiroyasu Seki, Munetoshi Tabata, Hitoshi |
description | This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array’s potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor’s signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas–nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s). |
doi_str_mv | 10.1021/acssensors.4c01280 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3103446015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103446015</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0Eggr6AyyQl2xS_EjSekmr8pCqsuCxjRxnXBklcfAkIP4eVy2PFZuZWZx7pTmEnHM24UzwK20QoUUfcJIaxsWMHZCRkFOVyFylh3_uEzJGfGWM8SwX2YwdkxOpRKbUVI7I-32jN67dUG_pi69172qgD2GjW2fowjedH9oK6TNuGU0f44rAWrf-wwVI5hqhossaTB_8NrL2CNT6QG-GfghA5843UDmja3rddXU8eudbPCNHVtcI4_0-Jc83y6fFXbJ6uL1fXK8SLYTsE5tDOQXIcltZY0TKjMpVaa2UUGbMSG0USwXX1czwUpaQpjxXuZhaJeLgXJ6Sy11vF_zbANgXjUMDda1b8AMWkjOZpnlUE1GxQ03wiAFs0QXX6PBZcFZslRe_you98hi62PcPZfzzJ_ItOAKTHRDDxasfQhvf_a_xC3OKkOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103446015</pqid></control><display><type>article</type><title>Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zang, Chuanlai ; Ramaraj, Sankar Ganesh ; Yano, Yasuo ; Yamahara, Hiroyasu ; Seki, Munetoshi ; Tabata, Hitoshi</creator><creatorcontrib>Zang, Chuanlai ; Ramaraj, Sankar Ganesh ; Yano, Yasuo ; Yamahara, Hiroyasu ; Seki, Munetoshi ; Tabata, Hitoshi</creatorcontrib><description>This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array’s potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor’s signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas–nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s).</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.4c01280</identifier><identifier>PMID: 39259973</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2024-10, Vol.9 (10), p.5188-5196</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113</cites><orcidid>0000-0003-2369-5813 ; 0000-0002-6837-9112 ; 0000-0002-8108-3914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39259973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zang, Chuanlai</creatorcontrib><creatorcontrib>Ramaraj, Sankar Ganesh</creatorcontrib><creatorcontrib>Yano, Yasuo</creatorcontrib><creatorcontrib>Yamahara, Hiroyasu</creatorcontrib><creatorcontrib>Seki, Munetoshi</creatorcontrib><creatorcontrib>Tabata, Hitoshi</creatorcontrib><title>Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array’s potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor’s signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas–nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s).</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0Eggr6AyyQl2xS_EjSekmr8pCqsuCxjRxnXBklcfAkIP4eVy2PFZuZWZx7pTmEnHM24UzwK20QoUUfcJIaxsWMHZCRkFOVyFylh3_uEzJGfGWM8SwX2YwdkxOpRKbUVI7I-32jN67dUG_pi69172qgD2GjW2fowjedH9oK6TNuGU0f44rAWrf-wwVI5hqhossaTB_8NrL2CNT6QG-GfghA5843UDmja3rddXU8eudbPCNHVtcI4_0-Jc83y6fFXbJ6uL1fXK8SLYTsE5tDOQXIcltZY0TKjMpVaa2UUGbMSG0USwXX1czwUpaQpjxXuZhaJeLgXJ6Sy11vF_zbANgXjUMDda1b8AMWkjOZpnlUE1GxQ03wiAFs0QXX6PBZcFZslRe_you98hi62PcPZfzzJ_ItOAKTHRDDxasfQhvf_a_xC3OKkOc</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Zang, Chuanlai</creator><creator>Ramaraj, Sankar Ganesh</creator><creator>Yano, Yasuo</creator><creator>Yamahara, Hiroyasu</creator><creator>Seki, Munetoshi</creator><creator>Tabata, Hitoshi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2369-5813</orcidid><orcidid>https://orcid.org/0000-0002-6837-9112</orcidid><orcidid>https://orcid.org/0000-0002-8108-3914</orcidid></search><sort><creationdate>20241025</creationdate><title>Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications</title><author>Zang, Chuanlai ; Ramaraj, Sankar Ganesh ; Yano, Yasuo ; Yamahara, Hiroyasu ; Seki, Munetoshi ; Tabata, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zang, Chuanlai</creatorcontrib><creatorcontrib>Ramaraj, Sankar Ganesh</creatorcontrib><creatorcontrib>Yano, Yasuo</creatorcontrib><creatorcontrib>Yamahara, Hiroyasu</creatorcontrib><creatorcontrib>Seki, Munetoshi</creatorcontrib><creatorcontrib>Tabata, Hitoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zang, Chuanlai</au><au>Ramaraj, Sankar Ganesh</au><au>Yano, Yasuo</au><au>Yamahara, Hiroyasu</au><au>Seki, Munetoshi</au><au>Tabata, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>9</volume><issue>10</issue><spage>5188</spage><epage>5196</epage><pages>5188-5196</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array’s potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor’s signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas–nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39259973</pmid><doi>10.1021/acssensors.4c01280</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2369-5813</orcidid><orcidid>https://orcid.org/0000-0002-6837-9112</orcidid><orcidid>https://orcid.org/0000-0002-8108-3914</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2024-10, Vol.9 (10), p.5188-5196 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_proquest_miscellaneous_3103446015 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20Volatile%20Organic%20Compounds%20Using%20a%20Single%20Nanowire-Based%20Electronic%20Nose%20for%20Future%20Biomedical%20Applications&rft.jtitle=ACS%20sensors&rft.au=Zang,%20Chuanlai&rft.date=2024-10-25&rft.volume=9&rft.issue=10&rft.spage=5188&rft.epage=5196&rft.pages=5188-5196&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.4c01280&rft_dat=%3Cproquest_cross%3E3103446015%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103446015&rft_id=info:pmid/39259973&rfr_iscdi=true |