Loading…

Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications

This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of t...

Full description

Saved in:
Bibliographic Details
Published in:ACS sensors 2024-10, Vol.9 (10), p.5188-5196
Main Authors: Zang, Chuanlai, Ramaraj, Sankar Ganesh, Yano, Yasuo, Yamahara, Hiroyasu, Seki, Munetoshi, Tabata, Hitoshi
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113
container_end_page 5196
container_issue 10
container_start_page 5188
container_title ACS sensors
container_volume 9
creator Zang, Chuanlai
Ramaraj, Sankar Ganesh
Yano, Yasuo
Yamahara, Hiroyasu
Seki, Munetoshi
Tabata, Hitoshi
description This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array’s potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor’s signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas–nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s).
doi_str_mv 10.1021/acssensors.4c01280
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3103446015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103446015</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0Eggr6AyyQl2xS_EjSekmr8pCqsuCxjRxnXBklcfAkIP4eVy2PFZuZWZx7pTmEnHM24UzwK20QoUUfcJIaxsWMHZCRkFOVyFylh3_uEzJGfGWM8SwX2YwdkxOpRKbUVI7I-32jN67dUG_pi69172qgD2GjW2fowjedH9oK6TNuGU0f44rAWrf-wwVI5hqhossaTB_8NrL2CNT6QG-GfghA5843UDmja3rddXU8eudbPCNHVtcI4_0-Jc83y6fFXbJ6uL1fXK8SLYTsE5tDOQXIcltZY0TKjMpVaa2UUGbMSG0USwXX1czwUpaQpjxXuZhaJeLgXJ6Sy11vF_zbANgXjUMDda1b8AMWkjOZpnlUE1GxQ03wiAFs0QXX6PBZcFZslRe_you98hi62PcPZfzzJ_ItOAKTHRDDxasfQhvf_a_xC3OKkOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103446015</pqid></control><display><type>article</type><title>Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zang, Chuanlai ; Ramaraj, Sankar Ganesh ; Yano, Yasuo ; Yamahara, Hiroyasu ; Seki, Munetoshi ; Tabata, Hitoshi</creator><creatorcontrib>Zang, Chuanlai ; Ramaraj, Sankar Ganesh ; Yano, Yasuo ; Yamahara, Hiroyasu ; Seki, Munetoshi ; Tabata, Hitoshi</creatorcontrib><description>This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array’s potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor’s signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas–nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s).</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.4c01280</identifier><identifier>PMID: 39259973</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2024-10, Vol.9 (10), p.5188-5196</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113</cites><orcidid>0000-0003-2369-5813 ; 0000-0002-6837-9112 ; 0000-0002-8108-3914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39259973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zang, Chuanlai</creatorcontrib><creatorcontrib>Ramaraj, Sankar Ganesh</creatorcontrib><creatorcontrib>Yano, Yasuo</creatorcontrib><creatorcontrib>Yamahara, Hiroyasu</creatorcontrib><creatorcontrib>Seki, Munetoshi</creatorcontrib><creatorcontrib>Tabata, Hitoshi</creatorcontrib><title>Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array’s potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor’s signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas–nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s).</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0Eggr6AyyQl2xS_EjSekmr8pCqsuCxjRxnXBklcfAkIP4eVy2PFZuZWZx7pTmEnHM24UzwK20QoUUfcJIaxsWMHZCRkFOVyFylh3_uEzJGfGWM8SwX2YwdkxOpRKbUVI7I-32jN67dUG_pi69172qgD2GjW2fowjedH9oK6TNuGU0f44rAWrf-wwVI5hqhossaTB_8NrL2CNT6QG-GfghA5843UDmja3rddXU8eudbPCNHVtcI4_0-Jc83y6fFXbJ6uL1fXK8SLYTsE5tDOQXIcltZY0TKjMpVaa2UUGbMSG0USwXX1czwUpaQpjxXuZhaJeLgXJ6Sy11vF_zbANgXjUMDda1b8AMWkjOZpnlUE1GxQ03wiAFs0QXX6PBZcFZslRe_you98hi62PcPZfzzJ_ItOAKTHRDDxasfQhvf_a_xC3OKkOc</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Zang, Chuanlai</creator><creator>Ramaraj, Sankar Ganesh</creator><creator>Yano, Yasuo</creator><creator>Yamahara, Hiroyasu</creator><creator>Seki, Munetoshi</creator><creator>Tabata, Hitoshi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2369-5813</orcidid><orcidid>https://orcid.org/0000-0002-6837-9112</orcidid><orcidid>https://orcid.org/0000-0002-8108-3914</orcidid></search><sort><creationdate>20241025</creationdate><title>Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications</title><author>Zang, Chuanlai ; Ramaraj, Sankar Ganesh ; Yano, Yasuo ; Yamahara, Hiroyasu ; Seki, Munetoshi ; Tabata, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zang, Chuanlai</creatorcontrib><creatorcontrib>Ramaraj, Sankar Ganesh</creatorcontrib><creatorcontrib>Yano, Yasuo</creatorcontrib><creatorcontrib>Yamahara, Hiroyasu</creatorcontrib><creatorcontrib>Seki, Munetoshi</creatorcontrib><creatorcontrib>Tabata, Hitoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zang, Chuanlai</au><au>Ramaraj, Sankar Ganesh</au><au>Yano, Yasuo</au><au>Yamahara, Hiroyasu</au><au>Seki, Munetoshi</au><au>Tabata, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>9</volume><issue>10</issue><spage>5188</spage><epage>5196</epage><pages>5188-5196</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO2), indium oxide (In2O3), ferric oxide (Fe3O4), and titanium oxide (TiO2) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation. The fabricated electronic nose (E-nose) was utilized to detect three types of volatile organic compounds (VOCs), with the results visualized in a heat map format. Additionally, the performance of each individual sensor was quantitatively studied, highlighting the array’s potential for enhanced gas detection and analysis. To further illustrate the interaction between gas molecules and the nanowires, we visualized the gas response results by mapping the sensor’s signal changes. These visualizations provide a clear representation of how different gas molecules interact with specific nanowires. For example, the heat maps reveal distinct response patterns for each type of VOC, allowing for the identification and differentiation of gases based on their unique signatures. This visualization technique not only enhances the understanding of gas–nanowire interactions but also demonstrates the effectiveness of the E-nose in distinguishing between various VOCs. The SnO2 nanowire gas sensor showed enhanced gas response compared to other materials. The SnO2 and TiO2 gas sensors showed enhanced response (62 and 56 s) and recovery times (100 and 37 s).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39259973</pmid><doi>10.1021/acssensors.4c01280</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2369-5813</orcidid><orcidid>https://orcid.org/0000-0002-6837-9112</orcidid><orcidid>https://orcid.org/0000-0002-8108-3914</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2024-10, Vol.9 (10), p.5188-5196
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_3103446015
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20Volatile%20Organic%20Compounds%20Using%20a%20Single%20Nanowire-Based%20Electronic%20Nose%20for%20Future%20Biomedical%20Applications&rft.jtitle=ACS%20sensors&rft.au=Zang,%20Chuanlai&rft.date=2024-10-25&rft.volume=9&rft.issue=10&rft.spage=5188&rft.epage=5196&rft.pages=5188-5196&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.4c01280&rft_dat=%3Cproquest_cross%3E3103446015%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a223t-f6eb7ee56fdfcc240c969bff33eb50c3ac90421ad8c1b3be44169627f9227f113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103446015&rft_id=info:pmid/39259973&rfr_iscdi=true